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Résumé

Cette these explore la possibilité d’exploiter I'ordinateur et les algorithmes quantiques dans
le contexte de I’apprentissage automatique afin de faire de ’analyse de données plus rapide-
ment. Nous savons depuis longtemps que 'ordinateur quantique peut offrir des avantages
computationnels par rapport a l'ordinateur classique, car il permet un nouveau paradigme
de calcul qui exploite les lois de la mécanique quantique pour offrir une accélération com-
putationnelle.

Dans cette theése sont proposés des algorithmes quantiques - plus rapides que leur
meilleure alternative classique - pour estimer les parametres des modeles d’apprentissage
automatique. En plus d’un ordinateur quantique avec correction d’erreur, nous supposons
avoir un acceés quantique a la base de données. En d’autres termes, nous faisons I’hypothese
que les données sont stockées dans une mémoire quantique, la contrepartie quantique de la
mémoire vive. Dans cette thése, on étudie des algorithmes pour 'apprentissage supervisé,
non supervisé, et pour la statistique. La caractéristique en commun de ces algorithmes est
que leur temps d’exécution dépend de maniére polylogarithmique du nombre d’éléments
du jeu de données, et de maniére linéaire du nombre de “features”. Le temps d’exécution
des algorithmes d’apprentissage automatique quantique présentés ici dépend de caractéris-
tiques de la matrice qui représente les jeux de données étudiés, comme le rang, la norme
de Frobenius, la sparsité, et ’erreur que l'on tolére dans l'analyse. On remarque que
les meilleures algorithmes classiques sont souvent linéaires dans la dimension du jeu de
données.

Pour 'apprentissage non supervisé, on étudie la version quantique de l'algorithme k-
means (g-means), un modele de clustering trés connu, et sa généralisation: “modele de
mélange gaussien”. Ce travail (QEM) peut étre pensé comme la version quantique de 1’
“espérance-maximisation”, un algorithme itératif d’importance considérable en apprentis-
sage automatique classique. Dans le méme contexte, on propose aussi des algorithmes
quantiques pour estimer la matrice de covariance de données provenant de distributions
non gaussiennes, résilients face a la présence de valeurs aberrantes, et un algorithme pour
estimer le logarithme du déterminant d’une matrice symétrique définie positive.

Pour I'apprentissage supervisé, nous proposons des algorithmes pour la réduction de
la dimensionnalité (Quantum Slow Feature Analysis). La réduction de la dimensionnalité
est un processus utilisé sur des bases des données de haute dimensionnalité pour améliorer
la précision d’un classificateur. Ici nous proposons aussi un algorithme quantique pour
la classification qui est adapté pour étre exécuté sur des ordinateurs quantiques avec peu
de qubits. Nous proposons également d’autres modeles d’apprentissage automatique qui
peuvent étre formulés comme un probléme a valeur propre généralisé - le méme probleme
qui est sous-jacent a la SFA classique - comme I’ Analyse Canonique des Corrélations (CCA),
et le “Goulot Gaussien Informationnel”.

Puisque chacun de ces algorithmes représente seulement un résultat théorique (i.e.
sous forme de preuves de garanties sur le temps d’exécution et de bornes sur erreur
d’approximation), on doit s’assurer que les performances réelles des algorithmes quantiques
offrent des avantages concrets par rapport aux meilleurs algorithmes classiques. Puisque
nous n’avons pas acces a des ordinateurs quantiques assez puissants pour exécuter ces
algorithmes, nous avons évalué leurs performances par des simulations classiques. Dans
ces expériences nous avons évité de construire et simuler des circuits quantiques: nous
avons plutét directement simulé les opérations d’algebre linéaire bruitée, correspondant a
I’exécution des algorithmes quantiques. Les simulations ont été effectuées sur des bases de
données standards utilisées dans la communauté de 'apprentissage classique pour qualifier
de nouveaux algorithmes et modéles (comme le MNIST). Dans les simulations, nous avons
ajouté les mémes erreurs que ’on s’attendrait a avoir si I’algorithme était exécuté par un
ordinateur quantique. Grace a cela, nous avons étudié la résilience d’une analyse de don-
nées aux erreurs de calcul insérées par les algorithmes quantiques, ce qui nous a permis



de comprendre quelles bases de données sont susceptibles d’étre analysées efficacement par
des algorithmes quantiques. Les expériences ont montré que I'impact du bruit n’affecte
pas la qualité de ’analyse. De plus, 'impact des parametres qui régissent la précision de
calcul n’empéche pas des speedup sur les jeux de données massives.

Pour conclure, cette thése donne 'espoir que 'ordinateur quantique avec acces quan-
tique a une base de données permettra de nouvelles possibilités dans 'apprentissage au-
tomatique. Nous pensons que I'apprentissage automatique quantique pourra favoriser de
nouvelles avancées technologiques, des lors que des machine quantiques capables de sup-
porter ces calculs seront prétes.

Mots clés: Apprentissage automatique quantique, computation quantique, simulation
quantique, analyse de données quantique.



Abstract

In this thesis we explore how we can leverage quantum computers and quantum algorithms
in the context of machine learning, so as to process and analyze datasets and information
faster. It has long been known that quantum computation can offer computational advan-
tages with respect to classical computers.

In this thesis we propose various quantum algorithms that return an estimate of a
machine learning model, that are faster than their best classical alternatives. Along with
an error-corrected quantum computer, we assume to have quantum access to a dataset.
In other words, we assume that the data is stored in a quantum memory: the corre-
sponding quantum version of the classical random-access memory. We study quantum
algorithms for supervised and unsupervised learning, dimensionality reduction, and statis-
tics. The common characteristic of these algorithms is that the runtime depends only
poly-logarithmically in the number of elements in the dataset, and is usually only linear in
the number of features. The runtime of the quantum machine learning algorithm also often
depends on characteristics of the matrix that represent the data under analysis, such as its
rank, the Frobenius norm, the sparsity, the condition number, and the error we tolerate in
the analysis. Note that in the vast majority of the cases, the best classical algorithms are
at least linear in the dimension of the data.

For unsupervised learning, we study a quantum version of k-means (g-means), a classi-
cal clustering algorithm and its generalization: the Gaussian Mixture Models. This work
can be thought of as the quantum version of Expectation-Maximization (QEM): an itera-
tive algorithm of considerable importance in classical machine learning. We also study a
quantum algorithm to estimate covariance matrices of data that comes from non-Gaussian
distributions, that is resilient to the presence of outliers, and quantum algorithms to esti-
mate the log-determinant of symmetric positive definite matrices.

For supervised learning, we put forward a quantum algorithm for supervised dimen-
sionality reduction (Quantum Slow Feature Analysis). Dimensionality reduction is a pre-
processing step that is used in high-dimensional datasets to increase the accuracy of a
classifier. Here we propose also a quantum algorithm for classification that is particularly
apt for quantum computers with not so many qubits (Quantum Frobenius Distance Clas-
sifier). Similarly to QSFA, we enlist some of the classical machine learning algorithms
that can be reformulated as a generalized eigenvalue problem - the same computational
problem that is underneath the classical Slow Feature Analysis algorithm-, like Canonical
Correspondence Analysis, and the Gaussian Information Bottleneck.

Since each of these algorithms represents only a new theoretical result, (i.e we can
provide guarantees on its runtime and bounds on the approximation error), we need to
make sure that the real performances of the quantum algorithms offers concrete advantages
with respect to the effective runtime and the accuracy that is offered by the best classical
algorithms. As we don’t have access to big-enough quantum computers yet, we assessed
the performance of these quantum algorithms via a classical simulation. The experiments
bypassed the construction of the quantum circuit and directly performed the noisy linear
algebraic operations carried out by the quantum algorithm.

The simulations have been carried out on some datasets that are considered the standard
benchmark of new machine learning algorithms, like the MNIST dataset, inserting the same
kind of errors that we expect to have in the real execution on the quantum hardware.

In the experiments we studied the robustness of a data analysis to the noise introduced
by the quantum algorithm, study the scaling of the runtime algorithm on real data, and
thus understand which datasets can be analyzed efficiently by quantum computers. The
experiments reveal that the impact of noise in the quantum algorithms does not decrease
significantly the accuracy in the data analysis. Furthermore, the impact of the error pa-
rameters in the runtime does not prevent quantum speedups for large datasets.

To conclude, this thesis gives hope that quantum computers, with quantum access to



the data, can unlock new capabilities in machine learning. We believe that quantum ma-
chine learning can foster further technological advancement, as soon as the hardware that
supports this kind of computation will be ready.

Keywords: Quantum machine learning; Quantum algorithms; Quantum Computa-
tion; Quantum simulations. Quantum data analysis.
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Chapter 1

Introduction

We are drowning in information and
starving for knowledge

John Naisbitt.

The amount of information humanity is producing is staggering. Eric Schmidt, exec-
utive chairman of Google, said in 2010 that as much data was being created every two
days, as was created from the beginning of human civilization to the year 2003 [106]. This
trend is not expected to cease any time soon: it’s expected that in the near future, humans
will keep producing an ever-increasing quantity of data. This data ranges among different
types (images, text, times series, video, web-pages, structured and unstructured content),
and size (from small to big data) with a marked tendency towards unsupervised datasets.
To give some representative figures, in October 2001 the traffic volume that transitioned
through AMS-IX (the Amsterdam-Internet eXchange: one of the most important nodes on
the Internet) exceeded 1 PB for the first time, and it had already doubled by June 2002.
10 years later, October 2010, the traffic volume was 232 PB. As of March 2020 it is 1.90
EB, with an average throughput of more than 4Thits per second.
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Figure 1.1: Total of yearly bits throughput at AMS-IX during 2019,/2020

Each day, 500 million tweets, and 294 billion emails are sent. Portals like Facebook
produce 4 petabytes of data daily. Each of the 50 million connected cars we have on the
roads today produces 4 terabytes of information. The number of messages that are sent
on WhatsApp touches 65 billion. On the biggest search engines of the world, 5 billion web
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10 CHAPTER 1. INTRODUCTION

searches are made. Walmart, already in 2010, had to handle more than 1 million trans-
actions per hour and had a database with 2.5 x 10'® bytes of information [50, 110]. It’s
estimated that by 2025, we will create daily around 450 exabytes of data. Some of these
massive databases became public datasets for machine learning researchers. Among the
many, we cite the SDPEOPLE DATASET: it has around 2 Million images with 40 male
and 40 female actors performing 70 actions[118]. For a list of large datasets, we refer to
https://www.datasetlist.com/

Processing big datasets require adequate-size processing machines. While it is hard to
estimate accurately, it would be safe to say that the available amount of computing power
(measured in FLOPS or MIPS) per dollar has increased by a factor of 10 roughly every 4
years over (approximately) the last 25 years. Since the 1940s, the ratio of MIPS/dollar has
grown by a factor of 10 roughly every 5 years, and FLOPS/dollar roughly every 7.7 years.
Over the past 6-8 years, the rate has been slower: around an order of magnitude every
10-16 years '. There is daunting evidence that, after more than half a century, Moore’s
law is approaching its physical limitations. In fact, it is not possible to decrease the size
of the transistors contained in our CPUs anymore. As of today, it is audacious to expect
to build transistors much below 14nm (i.e 1072 meter), which is about 70 silicon atoms
wide. Below this limit it would be hard not to incur quantum effects that will inevitably
result in errors in (classical) computations, thus spoiling the usefulness of modern CPUs.
In Figure 1.2 we report the evolution of the density of transistors in CPUs since 1971. As
we can see, in the past years, the trend has started to decelerate.

Microprocessor transistor counts 1971-2011 & Moore's law
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Figure 1.2: By Wgsimon - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/
w/index.php?curid=15193542

1This data has been measured in single-precision theoretical peak FLOPS. It has been analyzed in
[51] and based on Passmark’s benchmark scores. Passmark is a popular website that collects data and
benchmarks the power of CPUs https://www.cpubenchmark.net/
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Thanks to this overflow of information, combined with an increasing amount of com-
putational power, the industry of Machine Learning (ML) has flourished. The ML com-
munitystarted drifting away from the community of Artificial Intelligence, where it was
born, acquiring more and more autonomy and space over time. In fact, the ability to learn
from data or experiences is just one of the many aspects of human and animal intelligence
and was only one among the many facets of the study of AI. Presumably because of the
abundance of data and computational power, it has proven to be one of the most success-
ful facets, let alone a very practical one. For reference, important conferences in machine
learning, like NeurIPS (fk.a. NIPS) started in 1987 and they now gather up to 13.000
people. Perhaps due to the effectiveness of ML in discovering structure and relations in
data, our businesses, and society as a whole, started relying on these tools to make critical
decisions. Nowadays, the ability to extract actionable information is necessary for almost
all industries and organizations, even in the public sector and politics. Machine learning
has applications in different industrial sectors, including automation, healthcare, Internet
of Things, cybersecurity, biomedicine, etc.

The importance of faster ML algorithms can be seen in the following cases:

e Often there is intrinsic value in spending less time in running a computation. There
are many cases where the gap between infeasible and feasible computation is between
a runtime of weeks versus days. Faster algorithms might also decrease the time-to-
market of certain goods. A case in point is the pharmaceutical sector: the time to
market of new medicine strongly depends on the time needed to run some physical
experiments which aim at testing the properties of molecules and drugs. So far, these
experiments are necessary, as the size of the problem surpasses the scale of available
HPC and cluster infrastructures. Thus, these experiments cannot be substituted by
numerical simulations.

e Faster algorithms directly translate into the ability to process datasets that we cur-
rently have, but that we cannot process entirely, or that we process with sub-optimal
algorithms and models.

e With faster algorithms, we can improve upon the metrics of interest in analyzing
datasets with models that we currently use. In practice, this might translate into
using machine learning models with more parameters. This would eventually improve
the accuracy or other relevant metrics of choice.

In all these cases, having access to powerful algorithms holds the promise of unlocking
commercial and societal value that cannot be underestimated. As the amount of valuable
information that we are expected to analyze is increasing, and Moore’s law is ending, we
probably need to find a new paradigm for rethinking computation.

One decade ago, some important theoretical results - which are discussed in more detail
in subsequent sections - opened the door to the possibility of using quantum computers
in machine learning. This thesis studies how quantum computers, with quantum access
to such data, can be leveraged to get faster-than-classical algorithms for analyzing big
datasets and for training faster (or better) machine learning models.

Overall, thanks to quantum computers, business experts estimate gains by end-users
(either in form of cost savings or revenue opportunities) to surpass 450 billion dollars
annually. Nevertheless, these benefits are expected to be wrapped up in the next two
decades. The value for end-users of quantum technologies in 2024 is expected to reach at
most 5 billion dollars [96].

1.1 Computing with quantum information

At the beginning of the 20th century, most of physicists believed that the world could
be understood in terms of the laws of what we now call classical physics (i.e. Newton’s
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laws and Maxwell’s equations) [129, 18]. Besides few nagging questions, the progress that
physicists expected were just minor refinements, to get “an extra decimal place” of accu-
racy in their formulas. One of these nagging questions was the theoretical explanation of
a phenomenon, called “ultraviolet catastrophe”. In fact, for a fixed temperature, classical
physics explained the intensity of the radiation of a black body as a function of frequency.
In contrast, from the experiments, it is possible to see that the spectrum of a electromag-
netic radiation follow a characteristic curve. From the theory, the radiation predicted by
classical physics was expected to diverge. It was Max Plank, who proposed a way to settle
this glaring disagreement between theory and experiments by assuming that the energies
associated with the oscillations of electrons must be proportional to integer multiples of
their frequency (i.e. the energy comes in discrete quantities). What he once thought to
be just a mathematical trick, lead him to obtain the Nobel price in 1918, and laid the
foundations of quantum mechanics. The current formulation of quantum mechanics has
been standardized only in the 1920s. De Broglie proposed in 1923 the famous wave-particle
duality, and Schrodinger (1926) suggested to use partial differential equations to model the
evolution of quantum systems like electrons [127].

A few decades later, the contamination between computer science and quantum physics
was officially undertaken. In 1961, Landauer observed that the erasure of information
requires energy, and in principle, any computation that is reversible can be performed
without paying any energy cost. [21]. It was only during the 70s, that scientists like
Bennett, Fredkin, and Toffoli, developed further the idea of reversible computation. They
showed that it is possible to make any classical computation reversible, as long as no
information gets lost in the process. For doing this, they proposed a set of reversible logic
gates, which later became the set of quantum logic gates for quantum computers [63]. We
had to wait until 1982 for a seminal paper that described ideas of using quantum mechanical
systems to simulate other quantum physical systems [60]. Feynman conjectured that the
evolution of a purely quantum mechanical system cannot be simulated efficiently by a
classical computer. Thus, a quantum mechanical system is needed to simulate the behavior
of another purely quantum mechanical one. Later on, in 1986, another seminal paper of
Richard Feynman [59] formalized a prototypical architecture of a quantum computer (the
Feynman quantum computer) [107].

To date, the investigation of how the effects of quantum mechanics can be exploited in
computer science has taken many directions. In all these cases, the holy grail is to find
a problem with exponential separation between the quantum and classical settings. For
instance, we have quantum cryptography, quantum zero-knowledge proofs, quantum com-
munication complexity [17, 9, ], quantum complexity theory, space complexity in online
algorithms [97], query complexity [52, ], and many other exponential separation results.
Within the gate model, it is probably much harder to find computational complexity sepa-
rations. Except for the well-known result for factoring [131], finding examples of quantum
algorithms with “pure” exponential separations is still an open research question. The
class of decision problems that can be solved efficiently by a classical computer is called
BPP (Bounded-error Probabilistic Polynomial time). Their quantum analog is called BQP
(Bounded-error Quantum Polynomial time). While it is simple to show that BPP is con-
tained inside BQP, we do not know if this relation is strict, nor do we fully understand
the relation between BQP and NP. On one hand, many researchers do not believe that
NP is contained in BQP, namely, we do not believe that quantum computers can solve
NP-complete problems. On the other hand, in 2018, Raz and Tal proved the existence
of an oracle relative to which BQP ¢ PH [121]. Proving the existence of a problem that
lies outside BPP but is inside BQP N NP would imply a separation between P and NP.
Reaching such a result is non-trivial, thus we don’t expect to be easy to find. Nevertheless,
the main goal of quantum algorithmic research is to find interesting problems that are in
BQP but are not believed to be in BPP.
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1.1.1 Quantum Machine Learning

"Quantum machine learning is the
most over-hyped and underestimated
field in quantum computing"

John Preskill, citing Iordanis
Kerenidis.

There are many possible ways to bring together quantum computation and machine
learning. In the past ten years, we have witnessed two parallel trends [26]. On one side, re-
searchers tried to leverage machine learning techniques to improve upon our understanding
and control of quantum systems, in many different aspects. For instance, machine learning
can be used to model the noise that causes decoherence in quantum devices or to improve
control-systems that are used in order to direct the evolution of qubits [35]. On the other
side - and this is what most people refer to when they use the name QML (Quantum
Machine Learning) - it is the use of quantum computers to speed up the calculations of
algorithms that are used to build machine learning models. This can either mean using
quantum algorithms to estimate (i.e. fit) the parameters of a models or using quantum
computers as machines to perform the inference process of a given model. In this case, it
is not necessary to return a classical estimate of the model, but the output of the quantum
computation will be just inference made by the model. To better contextualize this thesis,
we briefly outline the landscape of the research in quantum machine learning. It is mainly
divided into three approaches. First, fuelled by recent developments in adiabatic quantum
computers, there is a flurry of research aimed at exploiting the adiabatic algorithm for ma-
chine learning. Within the context of the circuit model, two more paradigms emerged: the
“algorithmic paradigm”, and the “parameterized circuit” (also called variational circuits)
paradigm. The research in variational circuits is devoted to understanding the capabilities
of near-term devices (so-called NISQ, for Noisy Intermediate-Scale Quantum) for machine
learning. There, a hybrid quantum-classical optimization procedure uses a classical op-
timization algorithm to find the angles of a set of parameterized quantum gates. The
optimization process finds configurations of the gates such that the quantum processor
behaves as desired. One example could be a variational circuit trained on a supervised
dataset that learns how to classify correctly new test points. The other part of the re-
search uses the quantum computer as a device to off-load heavy classical computations.
This research, stemming from the theoretical computer science community, aims at obtain-
ing machine learning algorithms that can show provable guarantees on the error and the
runtime. Despite this attractive aspect, the drawback of theoretical quantum algorithms is
that they generally rely on the assumption of being executed on a fault-tolerant (i.e. error
corrected) quantum computer.

Adiabatic quantum machine learning Some researchers in QML are exploring the
usage of the adiabatic model of computation in order to speed up the training of machine
learning models. While the adiabatic paradigm is equivalent to the circuit model [4], in
this thesis we will mostly be focusing on the circuit model of quantum computation, which
is detailed in reference [112] and recapped in Section 2.1. In that Section, we will briefly
report some of the previous major results of applications of quantum computing to ma-
chine learning within this framework. It is worth recalling that some of the techniques for
quantum linear algebra used in this thesis have been developed originally in the circuit
model, can also find efficient implementations in the adiabatic model [139]. We expect
that the algorithms presented in this work can be (not without some technical difficulty)
translated into algorithms for adiabatic quantum computers.
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Variational circuits For sake of completeness, let’s briefly discuss the variational ap-
proach. As we don’t have error-corrected devices yet, this approach focuses on the study of
the so-called variational circuits [57, 20]. This approach aims to show that even with small
scale devices we can get useful applications for relevant problems. The “raison d’étre” of
the research in variational quantum circuits is to find useful applications of small quantum
computers, where the decoherence and the number of qubits prevents the execution of fully-
fledged quantum algorithms. While ML might not be the best target for proving useful
applications for near term devices, there are some interesting results in this direction [58].
The idea of using a variational circuit for (supervised) machine learning is the following.
In supervised learning the task is to approximate a function f : X — ) given samples from
the space (X x )). For variational circuits, the idea is to layout some quantum circuits
with parameterized gates. Then, the circuit is run a certain number of times using as
initial state some vector x; from the dataset, for which the output y; € Y is known. Then,
the output at the end of the computation is collected. At each iteration, the parameters of
the circuit are adjusted (according to a certain rule, which can be a simple gradient-based
algorithm) in order to steer the output of the circuit towards the desired one.

Quantum algorithms for machine learning The algorithmic approach - and this is
the topic of this thesis - is about writing algorithms, where you can prove that a given
procedure has a certain probability of failure, you can quantify the error achieved in es-
timating a certain quantity, and estimate the asymptotic runtime of the computation.
While the literature on quantum algorithms is vast, and it represents a useful resource
and language for writing quantum machine learning algorithms, in the next chapter we
review the main quantum results with particular emphasis on algorithms for ML. An im-
portant breakthrough, which unlocked many new possibilities in ML, is the so-called HHL
algorithm [30]. This work put together previous results in Hamiltonian simulation, phase
estimation, and state preparation, to deliver a quantum algorithm that creates a state that
is proportional to the solution of a linear system of equations. Remarkably, the runtime
of this algorithm was only poly-logarithmic with respect to the dimension of the linear
system. This is in stark contrast with the plethora of classical algorithms we had at the
time. It is important to stress that it is not easy to compare the HHL algorithm (or other
quantum linear system solvers) with a classical linear system solver, as the output of the
two algorithms is considerably different. In the classical case, the output of A~'b consists
of the classical description of the vector, while in the quantum case we have only have
access to a quantum state that is proportional to A~'b. To gain classical knowledge of the
quantum state, we need to perform a certain number of measurements on the final state.
The number of measurements required to obtain classically the information on the final
state depends on the error guarantees required, but it is usually linear in the dimension of
the system. More discussion along these lines can be found in [124, 1].

We also stress the fact that the runtime of the quantum algorithm does not take into
account the cost needed to set-up the quantum access to the matrix (or the initial known
vector). It was recently discovered, with a bit of dismay of much of the quantum machine
learning community, that if we were to allow also a classical algorithm some preprocessing
time and access to a data structure similar to that described in Section 2, Definition 8§,
also classical algorithms can achieve an asymptotic scaling which is poly-logarithmic in the
problem’s size. In 2019 a paper by [144] used techniques from randomized linear algebra
in order to propose a classical algorithm for recommendation systems, whose runtime
is only poly-logarithmic in the input dimension. While these series of results ruled out
possible exponential speedups based on this series of data structures, not all hope for
having significant speedups with quantum algorithms for machine learning is lost. Indeed,
these classical algorithms have much-worsened dependence on other parameters. Because
of this, in practice, these algorithms are not expected to offer any computational advantage.
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Some of these algorithms have been implemented, confirming that they are far from being
practical [12]. Nevertheless, the theoretical importance of these series of results [145, 39, 69]
should not go unnoticed. A nice review of randomized algorithms in linear algebra is [36].
These results highlight even more the limits and the potentials of quantum computation
and helps to remove unnecessary and potentially dangerous hype around the subject.

In the wake of the HHL algorithm, and later on a quantum algorithm for recommen-
dation systems, many quantum machine learning algorithms have followed [92, 99, ,

, , 19]. This thesis explores further how machine learning can benefit from the
computational paradigm offered by quantum computers.
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1.2 Contribution

Whether quantum processing machines can be used in order to solve efficiently and ac-
curately real-world problems, and lead to benefits for industry and society, remains the
billion-dollar question. Of course, in order to capitalize on the power of quantum mechan-
ics, one would need powerful and robust quantum hardware, with quantum access to large
datasets. Building such machines is rather hard and not straightforward at all. To justify
the efforts of building quantum computers, it is crucial to find practical applications of
quantum computing that would have a real economic and societal impact.

The research I conducted during my PhD was addressed towards providing evidence
that large-scale quantum computers with quantum access to data will be indeed useful
for running quantum algorithms in the context of machine learning. In order to provide
evidence that quantum computers can offer advantages over classical computation, my
work has been twofold. On one side, I developed new quantum algorithms in the context
of machine learning. These algorithms are the quantum analogues of some classical machine
learning algorithms: the output of the two computation is the same, up to some numerical
error (which we show how to bound). Secondly, I provided evidence through experiments
that these quantum algorithms can indeed be useful to solve real problems. We simulated
classically the procedures that the quantum algorithm performs including the errors in
these procedures. In the experiments, we also estimated the runtime of the quantum
algorithms, and compare them with the runtime of the best classical algorithms. In this
way, we were able to show that quantum algorithms can provide significant speedups for
many cases of interest.

More precisely, we design efficient quantum algorithms for a number of machine learning
procedures and applications: dimensionality reduction, iterative algorithms for learning
mixture models, clustering, classification, algorithms for estimating the log-determinant (a
kind of spectral sum), and for estimation of covariance matrix which are robust to outliers.

e In Chapter 4 we describe an algorithm for solving a dimensionality reduction problem
in Machine Learning, namely the Slow Feature Analysis, and show its application to
classification, proposing a new “NISQ” (Noisy Intermediate-Scale Quantum) clas-
sification algorithm. This work is based on: Kerenidis I. & Luongo A., Quantum
classification of the MNIST dataset via slow feature analysis, Physical Review Letter
A, 2020. Compared to the original pubblication, this work contains also an applica-
tion of QSFA to the problem of malware detection: a problem faced by practitioners
in cybersecurity.

e In Chapter 5 we describe a quantum algorithm for clustering, which fits the well-
known classical k-means model. This results is based on the work: Kerenidis, I.
Landman J., Luongo A., & Prakash A., g-means: A quantum algorithm for unsu-
pervised machine learning, in Advances in Neural Information Processing Systems
NeurIPS (pp. 4136-4146), 2019.

e In Chapter 6 we describe the quantum version of Expectation-Maximization, a fun-
damental ML algorithm that is often used to fit ML datasets with hidden variables.
This result is based on the work: Kerenidis I., Luongo A., & Prakash A., Quantum
Expectation-Maximization for Gaussian mixture models, in International Conference
on Machine Learning ICML, 2020.

e In Chapter 7 we describe a quantum algorithm for estimating the log-determinant of
symmetric positive-definite matrices, and show some of its applications. This result
is based on the work: Luongo A., Shao C., Quantum algorithms for spectral sums
and its applications ( manuscript under preparation, 2020).



Chapter 2

Introduction to quantum
computing

2.1 Preliminaries and notation

For all matrices A € R"*?, we recall the definition of singular value decomposition. The
matrix A can be written as:

A=wo (5 o) v

The matrix ¥ is a diagonal matrix with X;; = o; being the singular values (which we assume
to be sorted o1 > -+ > 0,). The matrices (U,Uy) and (V,V}) are orthogonal matrices,
which contain a basis for the column and the row space (respectively U and V') and the left
null-space and null-space (respectively Uy and Vp). Oftentimes, it is simpler to define the
SVD of a matrix by simply discarding the left and right null spaces, as A = ULV, where
U,V are orthogonal matrices and ¥ € R™*" is a diagonal matrix with real elements, where
r is the rank of the matrix. It is well known, but important to remark, that the matrices
AAT = UX2UT and ATA = VX2VT are symmetric. The dimension of the null-space
is the number of linearly-dependent columns. For a rank k matrix, the Moore-Penrose
pseudo-inverse is defined as Zf U%uiviT . Another relevant property of SVD is that the
nonzero singular values and the corresponding singular vectors are the nonzero eigenvalues

0

(ar 0) ()= ()

We will use the following matrix norms:

and eigenvectors of the matrix ( /?T A):

e ||Allo as the number of non-zero elements of the matrix A,

lA]l: = max. >oi o laij| is the maximum among the sum of the absolute value along

the columns of the matrix,

lAll2 = ||A]| = o1 is the biggest singular value of the matrix,

Al = max Z?:o la;;| is the maximum among the sum of the absolute values
sm

along the rows of the matrix,

| A|l,,.x is the maximal element of the matrix in absolute value.

17
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Note that for symmetric matrices, ||Allco = [|A|l1. With s we denote the sparsity, that is,
the maximum number of non-zero elements of the rows. The dataset that we manipulate
in this work are represented by a matrix V € R™*? ie. each row can be thought as a
vector v; € RY for i € [n] that represents a single data point. We denote as Vj the optimal
rank k approximation of V', that is Vj, = Zf:o ouvl , where u;, v; are the row and column
singular vectors respectively and the sum is over the largest k singular values o;. We denote
as V>, the matrix Zf:o Uiuiv;f where oy is the smallest singular value which is greater
than 7. For a matrix M and a vector z, we define as M<+9 sM<o sz the projection of = onto
the space spanned by the singular vectors of M whose éorresponding singular values are
smaller than 6, and some subset of singular vectors whose corresponding singular values
are in the interval [#, (1+6)6]. We use a standard notation of O for hiding polylogarithmic
factors in the big-O notation of the algorithms.

In this manuscript, we will work with various probability distributions, most of which
belong to the so-called exponential family, which we recall in the next definition.

Definition 1 (Exponential Family[110]). A probability density function or probability mass
function p(v|v) for v = (v1, -+ ,vm) € V™, where V C R, v € RP is said to be in the
exponential family if it can be written as:

p(el) = h(v) explo(r) TT(v) — A(v)}
where:
e v € RP s called the canonical or natural parameter of the family,
e o(v) is a function of v (which often is just the identity function),

e T(v) is the vector of sufficient statistics: a function that holds all the information
the data v holds with respect to the unknown parameters,

o A(v) is the cumulant generating function, or log-partition function, which acts as a
normalization factor,

e h(v) > 0 is the base measure which is a non-informative prior and de-facto is scaling
constant.

Lemma 2 (Hoeffding inequality [33]). Let Xy,..., X} be independent random variables
bounded by the interval [a,b]. Define the empirical mean of these variables by X = %(Xl +
<o+ Xg), then

Pr(IX —E[X]| <€) >1—2exp (—Zk€2 ) : (2.1)

Consequently, if k > (b—a)e 2log(2/n), then X provides an e-approzimation of E[X] with
probability at least 1 — 1.

Lemma 3 (Polynomial approximations of In(z) [65]). Let 8 € (0,1], n € (0,3] and t > 1.
There exists a polynomial S such thatVx € [3,1], |S(z)— ;ﬁfaﬁgﬂ <, and Vx € [-1,1]: —

1< 8(x) = S(—x) < 1. Moreover deg(S) = O(% log(%)).

2.2 Quantum Information

The standard formalism used in Quantum Information is the Dirac’s “bra-ket” notation,
which we will introduce in this section. We also recall here the postulates of quantum
mechanics and take this opportunity to settle the rest of the notation and preliminaries
used in this thesis. For the postulates, we follow the standard formulation in [112].
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Postulate 1. Associated to any isolated physical system is a complex vector space with
inner product (that is, a Hilbert space) known as the state space of the system. The system
is completely described by its state vector, which is a unit vector in the system’s state space.

As quantum states are described by unit vectors, we write |¢)) for a unit vector ¢» € H™.
So for a non-normalized vector x € R™, the normalized quantum state is represented
as |z) = |z 'z = mz;;o z;|i). We denote as {|i)};c[q) the canonical (also called
computational) basis for the d dimensional Hilbert space . The transpose-conjugate of
|z) is defined as {x|. We can think of |x) as a column vector, while (x| is a row vector, whose
entries have been conjugated. In Dirac’s notation, we denote the inner product between two
vector as (z[y). Their outer product is denoted as [z) (y| = 3=, ;c(q 25 4) (J] € HE®H.
The smallest quantum system is called a qubit, and is a 2 dimensional unit vector in C2.
A base for this vector space in quantum notation is denoted as |0) and |1). In this case,
the vector |¢) = a|0) + B|1) for o, € C represent a valid quantum state as long as
lo* + B = 1.

Postulate 2. The evolution of a closed quantum system is described by a unitary trans-
formation. That is, the state |1) of the system at time ty is related to the state |') of the
system at time to by a unitary operator U which depends only on the times t1 and to.

A matrix U € C?? is said to be unitary if UUT = UTU = I, that is, if the inverse of U
equal to its conjugate transpose. From this fact it follows that unitary matrices are norm-
preserving, and thus can be used as suitable mathematical description of a pure quantum
evolution. It is a standard exercise to see that the following are all equivalent definition of
unitary matrices [19]:

o (Av, Aw) = (v,w) for all v, w.

[|Av]| = ||v|| for all v

[[Av|| = 1 if |jv] = 1.

e U is a normal matrix with eigenvalues lying on the unit circle

|det(U)| =1
e The columns and the rows of U form an orthonormal basis of C¢
e U can be written as e*f! for some Hermitian operator H.

Postulate 3. Quantum measurements are described by a collection {M,,} of measurement
operators. These are operators acting on the state space of the system being measured. The
index m refers to the measurement outcomes that may occur in the experiment. If the state
of the quantum system is 1) immediately before the measurement, then the probability that
the result m occurs is given by

p(m) = (| Mf My, |9) (2.2)
and the state of the system after the measurement is

My, |¢)
(| M, My, )

The measurement operators satisfy the completeness equation

> MM, =1 (2.4)
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In practice, we will mostly perform projective measurements (also called von Neumann
measurements). A projective measurement is described by an observable: an Hermitian
operator M on the state space of the system being observed. The observable has a spectral

decomposition:
M=>"mP,
m

Where P, is a projector into the eigenspace of M associated with the eigenvalue m. This
means that the measurement operator will satisfy the following properties

e P, is positive definite

e P,, is Hermitian

o> Pn=1

e (P,)(P,) = dmn(Py,) are orthogonal projections.

Recall that an orthogonal projector P has the properties that P = P and P? = P.
Note that the second property derives from the first: all positive definite operators on C are
Hermitian (this is not always the case for positive definite operators on R, as it is simple
to find positive definite matrices that are not symmetric). Projective measurements can
be understood as a special case of Postulate 3: in addition to satisfying the completeness
relation ) M} M,, = I they also are orthogonal projectors. Given a state [), the
probability of measuring outcome m is given by:

If we were to measure outcome m, then the state of the quantum system after the mea-
surement would be:
P [¥)

p(m)
They have some useful properties. Just to cite one, the average value of a projective
measurement in a state |¢) is define as:

E(M) = p(m) (2.5)

= m | Puld) (2.6)
(Wl (D mPu) [¥) (2.7)
(Y] M |) (2.8)

In practice, our projective operators will be projectors in the computational basis, i.e.
P = ,eiq Im) (m|. From these rules, it is simple to see that the probability that a

1” S, @ |i) gives outcome i is |22/ ||z

measurement on a state |z) = E

Postulate 4. The state-space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Moreover, if we have systems numbered
from 1 through n, and each state is described as |1;), the join state of the total system is

&y [¥i) = [¥1) [¥2) - . [9n)

A quantum state that cannot be expressed as tensor product of two quantum state is
said to be entangled. The mathematical description of two quantum system is achieved
using a tensor product. The tensor product between two vectors |y) € R% and |y) € R%
is a vector |2) € RT1*. We can use the tensor operation to describe the joint evolution
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of separate quantum system. Let U; be the evolution of a quantum state |z) and Us the
evolution of a quantum state |y), Uy ® Us describe the evolution of the quantum system
|z) |y). Note that to build a state in |[v) € H™ we need [logn] qubits.

There are various models to measure the complexity of a quantum algorithm. We de-
note with T'(U) the time complexity needed to implement U, measured in terms of depth
of the circuit, which is roughly the number of time steps (or “clock time”) we need, to
executed the gates of the quantum circuit U.

2.3 Loading the data in quantum computer: quantum
memory models

Along with a fully fledged quantum computer, we also assume to have access to a quantum
memory, i.e. a classical data structure that stores classical information, but that can answer
queries in quantum superposition. This model is commonly called the QRAM model. As we
will see in greater detail soon, the task of building the data structure classically requires
time that is linear (up to polylogarithmic factors) in the dimension of the data. This
observation is better detailed in definition 4. For instance, if we want to have quantum
access to a dense matrix M € R™"*? the preprocessing runtime will be O(ndlog(nd)). To
stress more the fact that we are linear in the effective number of elements contained in
the matrix (which can often be sparse) can write O(||A]|,). The name QRAM is meant to
evoke the way classical RAM addresses the data in memory using a tree structure. In the
data structure, one can write down the real entries m;; with some precision § using log1/6
bits.

Note that sometimes, QRAM goes under the name of QROM, to stress the fact that
the QRAM is something that can be written during the runtime of the quantum algorithm,
but just queried, i.e. read. Furthermore, a QRAM is said to be efficient if can be updated
by adding, deleting, or modifying an entry in polylogarithmic time w.r.t the size of the
data it is storing. Using the following definition 4, we can better define the computational
model we are working with.

Definition 4 (QRAM model [91]). An algorithm in the QRAM data structure model that
processes a data-set of size m has two steps:

1. A pre-processing step with complexity 6(m) that constructs efficient QRAM data
structures for storing the data.

2. A computational step where the quantum algorithm has access to the QRAM data
structures constructed in step 1.

The complexity of the algorithm in this model is measured by the cost for step 2.

Equipped with this data structure, we are allowed to perform the following operation
in a quantum computer.

Definition 5. [QRAM - Quantum Random Access Memory], [71, 91] A quantum random
access memory is a device that stores indexed data (i,x;) fori € [n] and x; € R (eventually
truncated with some bits of precision). It allows query in the form |i)|0) — |i)|z;), and
has circuit depth O(polylog(n)).

We say that a dataset is efficiently loaded in the QRAM, if the size of the data structure
is linear in the dimension and number of data points and the time to enter/update/delete
an element is polylogarithmic in the dimension and number of data points. A direct
application of this model is what is commonly assumed in quantum algorithms to access
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sparse matrices. This is often useful when dealing with graphs, or simply with sparse
Hamiltonians.

Definition 6 (Oracle access in adjacency matrix model). Let V € R"*?, there is an oracle
that allows to perform the following mapping |j, k, z) — |j, k, z ® Vji)

Definition 7 (Oracle access in adjacency list model). Let V € R"*?, there is an oracle
that allows to perform the: mapping |i) — |i) |d(i)) where d(i) is the number of entries in
row i, and |j,1) — |7,v(4,1)), where v(j,1) is the l-th nonzero entry of the j-th column of
V.

In [117], they leveraged definition 5 to allow us to efficiently create superpositions
corresponding to the rows of the matrices, i.e. encoding the values of the components
of a matrix’ row in the amplitudes of a quantum state. Note that this data structure,
which sometimes goes under the name KP-trees [122], assumes and extends definition 5.
In practice, both are called QRAM, and both rely on two (different) tree data structure
for its construction.

Theorem 8 (Quantum access for matrices [92]). Let V € R"*9 there is a data structure
to store the rows of V' such that,

1. The time to insert, update or delete a single entry v;; is O(log?(N)).

2. A quantum algorithm with access to the data structure can perform the following
unitaries in time T = O(log? N).

(a) [)10) = [i) [os) for i € [n].
(6) 10) = Yaeim llvill 0.

We report what our QRAM data structure looks like for an input matrix X according
to the original definitions in [117, 92]. Each row of the matrix of the dataset is encoded
as a tree, where the leaves correspond to the squared values of the matrix elements (along
with their sign), while the intermediate nodes store the sum of the sub-tree rooted in each
node. Then, in the quantum algorithm, we assume to have quantum access to all the nodes
of the tree. In ML is common to pre-process the data, with either a polynomial expansion,
normalization, or scaling of the components, for instance in a way such that each feature
has unit variance and zero mean. These model suits perfectly these needs, as these opera-
tions can be done before storing the data in the quantum accessible data structure.

Recently, the data structure has been extended to allow space for some improvements in
the algorithms. In fact, let A/u = Po @ a decomposition of the matrix A, where the norm
of the rows of P and the columns of @) are at most 1, and the symbol o is the Hadamard
product. In the original formulation, the factorization chosen corresponded to a choice of
= ||Al|F. If there is a quantum circuit allowing creation of quantum states proportional
to the rows and the columns of P and @, the runtime of the quantum algorithms based
on this improved QRAM data structure can become a function of u, which can be smaller
than the Frobenius norm of A. In [91], they provided such efficient factorization for various
choices of p. In the following we explicitly define a class of functions u, parameterized by
p € [0,1], that will prove to be very useful in governing the runtime of the quantum
algorithms.

Definition 9 (Possible choice of 11,,(A)). For s,(A) = maxien] 3 jeq) AP

ij» we chose pi,(A)
to be: jip(A) = minpeio (1Al /525 (4)51 2 (AT)),

The original definition of QRAM, where u(A) = ||A||r corresponds to the factorization

A/||Allp = P o Q where we have p;; = 4 and ¢;; = HA‘.IF' For the generalized choice
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of p in definition 9, it is necessary to store two quantum accessible data structures, that
respectively store the rows and the columns of a function of A. Instead of storing a;; (along
with the sign, which is stored separately), we store sgn(aij)afj and a}j_p . The different
terms in the minimum in the definition of u(A) correspond to different choices for the data
structure for storing A. Note that in the worst case, u(A4) < ||Al| < Vd as we assume
that ||A|| = 1. Having a small value for u(A) is very important, as this value will appear in
the runtime of the quantum algorithms. In this thesis we always assume to have quantum
access to matrices which are normalized such that ||A]] < 1.

For details on how to use quantum access to this data structure and proving theo-
rem 8, the reader is referred to [92, Appendix] for the original proof, [91, theorem 4.4]
for details on the choices of p(A). More explicit proofs for the creation of quantum states
with choices of p different than the Frobenius norm can be found in [37, lemma 25] and [70].

To grasp the importance of this model we discuss the hurdles and bottleneck of doing
data analysis on massive datasets. When the data that needs to be processed surpass
the size of the available memory, the dataset can only be analyzed with algorithms whose
runtime is linear (or at most quadratic) with respect to the size of the dataset. Super-
linear computations (like most algorithms based on linear-algebra) are too computationally
expensive, as the size of the data is too big to fit in live memory.

Under these conditions, quantum computers can offer significant advantages. The run-
time of the whole process of performing data analysis using quantum computers is given
by the time of the preprocessing and constructing quantum access, plus the runtime of the
quantum procedure. In practice, we want to write algorithms with a total computational
complexity of O(||Al|,) + O(poly(k(A), u(A),1/e,log(n),T)), where x(A), is the condition
number of the matrix, € the error in the approximation of the calculations, and I" might rep-
resent some other parameters that depends on the data, but not on its size. This represents
an improvement compared to the runtime of the best classical algorithms in machine learn-
ing, which is O(poly(||A[|,) x poly(x(A),1/e€)). Note that without resorting to randomized
linear algebra (as in the case of the dequantizations), these runtimes are lower bounded by
the runtime for matrix multiplication and matrix inversion. As the QRAM preparation is
computationally easy to implement, (it requires a single or few passes over the dataset, that
we can do when we receive it, and it is can be made in parallel) a quantum data analysis
can be considerably faster than the classical one. It is clear that, even if the scaling of
the quantum algorithm is sub-linear in the data (it is often, in fact, polylogarithmic in n),
if we consider in the runtime of the algorithms also the time to build quantum access we
“lose” the exponential gap between the classical and the quantum runtime. Nevertheless,
the overall computational cost can still largely favor the quantum procedure, as we expect
the final runtime of the quantum algorithm to be comparable to the preprocessing time.
Moreover, the preprocessing can be made once, when the data is received. For the choice
of the data structure that leads to a value of p equal to the Frobenius norm of the matrix
under consideration, this can be done even on the fly, i.e. while receiving each of the rows of
the matrix. For the choice of i related to a p norm, the construction of the data structure
needs only a few passes over the dataset.

2.4 Retrieving the data

To retrieve information from a quantum computer, we are going to use some efficient
procedures that allow us to reconstruct classically the information stored in a quantum
state. These procedures can be thought of as clever ways of sampling a state |z). The
idea for an efficient quantum tomography is that we want to minimize the number of times
that the sate |x) is created, and consequently, the number of times we call the process that
creates |x).
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Much of the current literature in quantum tomography is directed towards reconstruct-
ing a classical description of density matrices.

Theorem 10 (Efficient quantum tomography [113]). An unknown rank-r mized state p €
C4*d can be estimated to error € in Frobenius distance using n = O(d/€?) copies, or to
error € in trace distance using n = O(rd/e*) copies.

The quantum algorithms described in this thesis usually work with pure quantum states.
Moreover we assume to have access to the unitary that creates the quantum state that we
would like to retrieve and that we have access to the unitary that creates the state (and
that we can control it). Under these conditions, the process of performing tomography
is greatly simplified. According to the different error guarantees that we require, we can
choose between two procedures.

Theorem 11 (Vector state tomography [90] with {5 guarantees). Given access to unitary
U such that U |0) = |x) and its controlled version in time T(U), there is a tomography
algorithm with time complexity O(T(U)%) that produces unit vector T € R? such that
|z — |z)|| < € with probability at least (1 — 1/poly(d)).

Theorem 12 (Vector state tomography [38] with £, guarantees). Given access to unitary
U such that U |0) = |z) and its controlled version in time T'(U), there is a tomography
algorithm with time complezity O(T(U)loeizd) that produces unit vector T € RY such that
|7 — |z)|l, < € with probability at least (1 — 1/poly(d)).

Note that in both kinds of tomography, dependence on the error in the denominator is
quadratic, and this is because of the Hoeffding inequality, i.e. lemma 2. Another remark on
the hypothesis of the algorithms for tomography is that they require a unitary U such that
U |0y — |x) for the |z) in question. Oftentimes, due to the random error in the quantum
subroutines used inside the algorithms, this state |z) might slightly change every time. We
will see that in this thesis the variance on the state |z) is due to errors in mostly due to the
phase estimation procedures. In Section 2.5.1 we discuss ways of making phase estimation
algorithms almost deterministic.

More advanced techniques have been recently developed in [157]. There, the authors
used the assumption of doing tomography on a state |x) that is in the row space of a rank r
matrix A for which we have quantum access. They propose an algorithm to obtain the clas-
sical description of the coefficients x; in the base spanned by the rows {4;}7_,of A, so that
|z) = "7 x; |A;). This requires O(poly(r)) copies of the output states and O(poly(r), ")
queries to input oracles. While this procedure has the benefit of not being linear in the
output dimension of the final state, the high dependence on the rank might hide the ad-
vantages compared to the previous quantum tomography procedures. For completeness,
the result is as follows.

Theorem 13 ([157]). For the state |v) lies in the row space of a matriz A € R™"*¢ with rank
r and condition number k(A), the classical form of |v) can be obtained by using O(r3€?)
queries to the state |v), O(r''x®"e=21log(1/0)) queries to QRAM oracles of A and O(r?)
additional inner product operations between rows, such that the {2 norm error is bounded
in € with probability at least 1 — 6.

Other strategies to output data from a quantum computer can be sampling, or (if the
output of the computation is just a scalar) amplitude estimation. These techniques can be
employed when the output of the computation is a scalar.

2.5 Additional quantum results

We will make use of a tool developed in [151]. It is a standard technique in classical
computer science to boost the success probability of a randomized algorithm by repeating
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it and computing some statistics in the results. For the case of quantum algorithms, by
and large, we take multiple copies of the output of the amplitude estimation procedure,
compute the median, and reverse the circuit to get rid of the garbage.

Lemma 14 (Median Evaluation [151]). Let U be a unitary operation that maps
U: 0™ = Valr,1) + V1 —a|G,0)

for some 1/2 < a < 1 in time T. Then there exists a quantum algorithm that, for any
A > 0 and for any 1/2 < ag < a, produces a state |¥) such that || |[¥) —]09"L) |z) || < V2A
for some integer L, in time

- { In(1/A) 2
2 (laol - 3)

We will also use some simple statements from previous literature.

Claim 15. [From [95]] Let €, be the error we commit in estimating |c) such that |||c) — [¢)|| <
€y, and €, the error we commit in the estimating the norms, |||c|| — ||c|l| < eq|lc||. Then

[ =l < v/nlea + ep).-

Claim 16. [ From [01]] Let 0 be the angle between vectors z,y, and assume that 6 < m/2.
V2e

ll=ll -

Then, |lx —yl| < € implies |||x) — |y)|| <
norm.

Where |x) and |y) are two unit vectors in {3

2.5.1 Phase estimation

Theorem 17. Phase estimation [9/] Let U be a unitary operator, with eigenvectors |v;)

and eigenvalues €% for 0; € [—m, 7], i.e. we have U |v;) = €% |v;) for j € [n]. For a pre-
cision parameter € > 0, there exists a quantum algorithm that runs in time O(T'(U)logn/e)
and with probability 1—1/poly(n) maps a state |¢;) =3 c, @ |vj) to the state e, v |vg) 1605)
such that 0; € 0; £ ¢ for all j € [n].

While the standard implementation of phase estimation is based on the quantum Fourier
transform (QFT) circuit [112], there have been various improvements [5] which try to soften
the dependence on the QFT circuit while retaining the accuracy guarantees offered by the
QFT in estimating the angles 6;.

Remark. Note that the same algorithm described by theorem 17 can be made “consis-
tent”, as in the sense of [130]. While in the original formulation of phase estimation two
different runs might return different estimates for éj, with a consistent phase estimation
this estimate is fixed, with high probability. It means that the error, between two different
runs of phase estimation, is almost deterministic.

2.5.2 Amplitude amplification and amplitude estimation

Amplitude amplification and amplitude estimation are two of the workhorses of quantum
algorithms. In this section, we report both the original statement of the theorem, and a
simpler version, which is better suited for the context of our algorithms.

Theorem 18 (Amplitude estimation [34]). Given a quantum algorithm

A0y = /ply,1) ++/1—-p]|G,0)

where |G) is some garbage state, then for any positive integer P, the amplitude estimation
algorithm outputs p (0 < p < 1) such that

B p(1—p) T2
—pl<op MR- P) (7)
-l <2n PP (2
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with probability at least 8/72. It uses exactly P iterations of the algorithm A. If p =0 then
p = 0 with certainty, and if p =1 and P is even, then p = 1 with certainty.

In the original amplitude amplification algorithm, we assume to know P, i.e. the correct
number of iterations. Later on, a fixed-point version of amplitude amplification has been
proposed [74], which has been optimized in [155]. These versions do not require to know P
in advance. Recently, various researchers worked on improvements of amplitude estimation
by getting rid of the part of the original algorithm that performed the phase estimation
(i.e. the Quantum Fourier Transform [112]) [73, 2]. Perhaps a simpler formulation, which
hides the complexity of the low-level implementation of the algorithm, and is thus more
suitable to be used in quantum algorithms for machine learning is the following.

Lemma 19. (Amplitude amplification and estimation [7/]) If there is unitary operator
U such that U|0)" = |¢) = sin(6) |z, 0) + cos(d) |G,0%) then sin2(6) can be estimated to

T(U) TU) )
n sin(0) sin(60)
where T(U) is the time to implement U.

multiplicative error n in time O(

) and |x) can be generated in expected time O(

2.5.3 Quantum linear algebra

In our algorithms, we will also use subroutines for quantum linear algebra. From the first
work of [80] that proposed a quantum algorithm for matrix inversion, a lot of progress
has been made. In this section, we briefly recall some of the results in quantum linear
algebra. We conclude by citing the state-of-the-art techniques for performing not only
matrix inversion and matrix multiplication, but also for applying a certain class of functions
to the singular values of a matrix. A notable result after HHL, was the ability to perform a
quantum version of the singular value decomposition. This idea is detailed in the following
theorem.

Theorem 20 (Singular Value Estimation [91]). Let M € R"*? be a matriz with singular
value decomposition M = Y, o;u;vl for which we have quantum access. Let € > 0 the
precision parameter. There is an algorithm with running time O(u(M)/€) that performs
the mapping Y, a; |vi) — >, a; |vi) |G3), where |6; — o3| < € for all i with probability at
least 1 — 1/poly(n).

Recall that quantum access to a matrix is defined in definition 8, and the parameter
1 is defined in definition 9. The relevance of theorem 20 for quantum machine learning
is the following: if we can estimate the singular values of a matrix, then we can perform
a conditional rotation controlled by these singular values and hence perform a variety of
linear algebraic operations, including matrix inversion, matrix multiplication or projection
onto a subspace. Based on this result, quantum linear algebra was done using the theorem
stated below.

Theorem 21 (Matrix algebra [92, 91]). Let M := ", ou;v] € R such that | M|, = 1,
and a vector x € R for which we have quantum access. There exist quantum algorithms
that with probability at least 1 — 1/poly(d) return

(i) a state |2) such that | |z) — |Mz)| < € in time O(k*(M)u(M)/€)
(i) a state |z) such that | |z) — |M~'z) | < € in time O(k*(M)u(M)/e)

(iii) a state |MZ, sM<g sx) in time (59HM§9,5M§9,693H)

One can also get estimates of the norms with multiplicative error n by increasing the run-
ning time by a factor 1/n.
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For a symmetric matrix M € R%*? with spectral norm ||[M|| = 1 for which we have

quantum access, the running time of these algorithms depends on the condition number
k(M) of the matrix, that can be replaced by x.(M), a condition threshold where we keep
only the singular values bigger than 7, and the parameter p(M), a matrix dependent
parameter defined in definition 9. The running time also depends logarithmically on the
relative error e of the final outcome state. Recall that these linear algebra procedures
above can also be applied to any rectangular matrix V' € R"*? by considering instead the

. . 0o Vv
symmetric matrix V = (VT O).

Singular value estimation of a product of two matrices

In the course of the work discussed in Chapter 4, we also needed an algorithm to perform
Singular Value Estimation of a matrix W that is the product of two matrices P and @
for which we have quantum access. In the final version of the work, this algorithm has
been replaced by Singular Value Transformation techniques, which we discuss in the next
Section.

Theorem 22 (SVE of product of matrices). Assume to have quantum access to matrices
P c R gnd Q € R¥*?. Define W = PQ =UXVT and € > 0 an error parameter. There
is a quantum algorithm that with probability at least 1 — poly(d) performs the mapping
doialv) = > i |vg) [o7) where @; is an approzimation of the eigenvalues o; of W such

that |os — 53| < €, in time O ((N(P)M(Q))(M(P)Jru(cz))).

€

Proof. We start by noting that for each singular value o; of W there’s a corresponding
eigenvalue e~ of the unitary matrix e™*"V'. Also, we note that we know how to multiply
by W by applying theorem 21 sequentially with @ and P. This will allow us to approxi-
mately apply the unitary U = e¢~*"W. The last step will consist of the application of phase
estimation to estimate the eigenvalues of U and hence the singular values of W. Note that
we need W to be a symmetric matrix because of the Hamiltonian simulation part. In case
W is not symmetric, we redefine it as

W= [(Pg)T POQ]

Note we have W = M M, for the matrices My, M5 stored in QRAM and defined as
P 0 0
nely gl 9)

We now show how to approximately apply U = e efficiently. Note that for a sym-
metric matrix W we have W = VEVT and using the Taylor expansion of the exponential
function we have

—iW

With U we denote our first approximation of U, where we truncate the sum after ¢
terms.

We want to chose £ such that HU - ﬁH < ¢/4. We have:
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| | il
J = 7 j=tr1
(oo} . ; oo oo
(—iW)7 1 1 o
> e > s > 51 <2 (2.10)
j=C+1 j=t+1 j=t+1

where we used triangle inequality and that HWJ H < 1. Choosing ¢ = O(log 1/¢) makes
the error less than €/4.

We cannot apply U exactly but only approximately, since we need to multiply with the
matrices W7, j € [f] and we do so by using the matrix multiplication algorithm for the
matrices My and Ms. For each of these matrices, we use an error of é which gives an
error for W of ;5 and an error for W7 of at most 7. The running time for multiplying with
each W7 is at most O(€(k(M71)u(My)log(8¢/e) + w(Mz)u(Mz)log(8¢/¢))) by multiplying
sequentially. Hence, we will try to apply the unitary U by using the Taylor expansion up
to level £ and approximating each W7, j € [¢] in the sum through our matrix multiplication
procedure that gives error at most £

In order to apply U on a state |z) = Y. ; |v;), let’s assume £+ 1 is a power of two and

define N; = Zé.:o((_.ii)j)? We start with the state

Fii

1 —1
NPy

Controlled on the first register we use our matrix multiplication procedure to multiply
with the corresponding power of W and get a state at most €/4 away from the state

l L
1 —1/ ;
—= > = i) [Wiz).
/ |
Nl i=o 7]
We then perform a Hadamard on the first register and get a state /4 away from the
state

1

%r§

where N’ just normalizes the state in the parenthesis. Note that after the Hadamard
on the first register, the amplitude corresponding to each |é) is the first register is the
same. We use this procedure inside an amplitude amplification procedure to increase the
amplitude 1/+v/Z of |0) to be close to 1, by incurring a factor v/ in the running time. The
outcome will be a state €¢/4 away from the state

\W” +04)|G)

FZ ], L \wiay | = |0)
=0

which is the application of U. Since HU ~-U H < ¢/4, we have that the above procedure

applies a unitary U such that HU — UH < €/2. Note that the running time of this procedure
is given by the amplitude amplification and the time to multiply with W7, hence we have
that the running time is

O(KS/Z(H(MI)N(MI) log(8¢/€) 4+ k(Ma) (M) log(8¢/€))
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Now that we know how to apply U, we can perform phase estimation on it with error
€/2. This provides an algorithm for estimating the singular values of W with an overall
error €. The final running time is

€3/2
O(T(“(MI)N(M1> log(8¢/€) + k(M2)p(Mz) log(8¢/€))
max P Q
We have p(Mr) = p(Msz) = p(P) + p(Q) and k(M) = k(Ms) = W <

k(P) + k(Q), and since £ = O(log 1/€)the running time can be simplified to

o( (k(P) + K(Q)) e(u(P) + (@)

).
O

2.5.4 Linear combination of unitaries, normal forms, and singular
value transformations

We continue our journey in quantum linear algebra by discussing the state-of-the-art tech-
nique beneath quantum linear algebra, called singular value transformation.

The research of quantum algorithms for machine learning has always used techniques
developed in other areas of quantum algorithms. Among the many, we cite quantum
algorithms for Hamiltonian simulation and quantum random walks. In fact, using quantum
random walks, it is possible to decrease the dependence on the error parameter, from
polynomial to polylog(1/e) [11]. Stemming from the research in Hamiltonian simulation
[24, , 25, , |, these techniques have been further optimized, pushing them to the
limit of almost optimal time and query complexity. A significant progress in the direction
of quantum algorithms for linear algebra was the so-called LCU, or linear combination of

unitaries [11], which again was developed in the context of the Hamiltonian simulation
problem.
Lemma 23 (Linear combination of unitaries [10]). Let M = Y. o;U; be a linear com-

bination of unitaries U; with a; > 0 for all i. Let V be any operator that satisfies
V0™ = =", \Jag|i, where a:=Y", ;. Then W := VUV satisfies

[e%

W[0%™) [) = ~09™) M [9)) + [¥) (2.11)

1
o
for all states |¢b), where U := 3", |i) (i| @ U; and (J0°™) (0°™| ® I) |¥+) = 0.

In recent years a new framework for operating on matrices with a quantum computer

was developed, which can be found in works [37, 70]. We now briefly go through the
machinery behind these results, as it will be used throughout this thesis.

Definition 24 (Block encoding). . Let A € C? %", We say that a unitary U € Clsta)x(s+a)
is a (a,a,€)-block-encoding of A if:

IA = a((0* @ NU0)* @ )] < €

We will see that having quantum access to a matrix A € C2"*2" | as described in the
setting of theorem 8, it is possible to implement a (u(A), w + 2, polylog(e))-block-encoding
of A1, Given matrix U which is a (a, a,d)-block-encoding of A, and a matrix V which is
a (8,0, €)-block-encoding of B, it is simple to obtain a (a8, a + b, ve + $0)-block-encoding

1This polylog(e€) in the block-encoding is due to approximation error that one commits when creating
quantum access to the classical data structures, i.e. is the approximation that derives from truncating a
number n € R (which represent an entry of the matrix) up to a certain precision € [37, lemma 25].
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of AB.

For practical purposes, having a block-encoding of a matrix A, allows one to manipulate
its spectra using polynomial approximations of analytic functions. In the following theorem,
the notation Pr(A) means that we apply the polynomial P to the singular values of the
matrix A, i.e. Pp(A4) =7 P(o;)uv) .

Theorem 25 (Polynomial eigenvalue transformation of arbitrary parity [70]). Suppose
that U is an (o, a, €)-block-encoding of the Hermitian matriz A. If § > 0 and Py € R[z] is
a degree-d polynomial satisfying that

e forallz € [-1,1]: |Pr(z)| < 3.

Then there is a quantum circuit U, which is an (1, a+2, 4d~/e/a+0)-encoding of Pr(A/a),
and consists of d applications of U and U gates, a single application of controlled-U and
O((a + 1)d) other one- and two-qubit gates. Moreover we can compute a description of
such a circuit with a classical computer in time O(polyd,log(1/6)).

For instance, matrix inversion can be seen as the problem of implementing the singular
value transformation of x — 1/x. For this, one needs to get a polynomial approximation
of the function 1/x. While this might seem a simple task, there are small complications.
First, one usually does not consider the whole interval [—1,1]. In practice, one excludes
the subset of the domain where the function has singularities (i.e. for 1/x is around zero).
Then, it is preferable to pick a polynomial of a small degree (and small coefficients), as the
depth of the circuit depends linearly on the degree of the polynomial.

Given a (q, a, €)-block-encoding for a matrix A and a quantum state |b), we can obtain
a good approximation of A|b) /|| Ab|| by first creating the state |0%,b) and then applying
the block-encoding of A to it. Then, we can amplify the part of the subspace associated
to the state \0>®a A |b). Differently, one might use advanced amplification techniques and
reach a similar result. This concept is detailed in the following lemma.

Lemma 26 (Applying a block-encoded matrix to a quantum state [37, lemma 24]). Fiz
any € € (0,1/2). Let A € CN*N such that ||A|| < 1 and |b) a normalized vector in CV,
such that ||A|b)|| > . Suppose that |b) can be generated in complexity Ty, and there is a
(a, a, €)-block-encoding of A for some o > 1, with € < e7v/2, that can be implemented in
cost T'x. Then there is a quantum algorithm with complexity

a(Ta+Ty) aTalog(l/e)+Tg ))
v gl

O <mzn(
that terminates with success probability at least 2/3, and upon success generates the state
Alb) J1AIb)|| to precision .

For sake of completeness, we briefly discuss how to prove the first upper bound. Gen-
erating |b) and applying the block-encoding of A to it, we create a state that is (e/a)-close
to:

05 (ZA[B) + [0*)

From the hypothesis, we know that || L A [b)|| > 7/a. We can use O(a/7) calls to amplitude

amplification on the initial register being |0)®?, to get < close to 0)®* ”ﬁm). The second
upper bound is shown by other techniques based on amplitude amplification of singular
values of block encoded matrices (i.e. [37, lemma 47], [L04, theorem 2, 8]).

Regarding the usage of block-encoding for solving with a quantum computer a linear
system of equations (i.e. multiplying a quantum state by the inverse of a matrix, and
creating a state |x) proportional to A1 |b)) we can proceed analogously. First, we need to
create block-encoding access to A~!. Using the following lemma, (where they denoted with
k the condition number of A) we can implement negative powers of Hermitian matrices.



2.5. ADDITIONAL QUANTUM RESULTS 31

Lemma 27 (Implementing negative powers of Hermitian matrices [37, lemma 9]). Let
¢ € (0,00),k > 2, and let A be an Hermitian matriz such that I/k < A < I. Suppose

that § = o(e/(k*¢(1 + ¢) log® g)) and U is an (a, a,d)-block-encoding of A that can be
implemented using Ty gates. Then, for any €, we can implement a unitary U that is a
(2K, a, €)-block-encoding of H=¢ in cost:

0] (om(a +Ty)(1+¢) 10g2(k1:6)>

Nevertheless, the algorithm that emerges by using the previous lemma has a quadratic
dependence on . To decrease it to an algorithm linear in s the authors used variable time
amplitude amplifications[7]. Hence, we can restate the theorem 21, with the improved
runtimes, as follows.

Theorem 28 (Matrix algebra [37, 70]). Let M := 3", ou;vl € R such that | M|, = 1,
and a vector x € R? for which we have quantum access in time Ty. There exist quantum
algorithms that with probability at least 1 — 1/poly(d) return

(i) a state |2) such that ||z) — |Mz)| < € in time O(k(M)(u(M) + Ty)log(1/€))
(i) a state |2) such that ||z) — |M~'z)| < e in time O(k(M)(u(M) + T)log(1/€))

(ii) a state |[MZ, sM<g,5) in time O( X—59HM;9,5MSH,WH
One can also get estimates of the norms with multiplicative error n by increasing the run-
ning time by a factor 1/n.

Another important advantage of the new methods is that it provides easy ways to
manipulate sums or products of matrices.

Theorem 29 (Matrix algebra on products of matrices [37, 70]). Let My, My € R4*4 such
that || My, = |Mz||, = 1, M = My M>, and a vector x € R? for which we have quantum
access. There exist quantum algorithms that with probability at least 1 — 1/poly(d) return

(i) a state |2) such that | |2) — |[Mz) | < € in time O(k(M)(u(My) + p(Mz))log(1/€))
(ii) a state |z) such that | |z) — |[M~'z) | < € in time O(k(M)(u(M;) + p(My))log(1/€))

(iii) a state |M;9,6M§9_’5:E> in time O(M)

59||M;15M§9,51H

One can also get estimates of the norms with multiplicative error n by increasing the run-
ning time by a factor 1/n.

More generally, applying a matrix M which is the product of £ matrices, i.e. M =
M; ... M, will result in a runtime of x(M) (Zf w(M;))log(1/e€) factors in the runtime.

2.5.5 Distance estimations and quadratic form estimation

In this section, we prove two new lemmas that can be used to estimate the inner products,
distances and quadratic forms between vectors. The lemma 30 has been developed in the
work [93], while the lemma for estimating the value of quadratic form has been formalized
in the work under preparation with Changpeng Shao.

Lemma 30 (Distance / Inner Products Estimation [03]). Assume for a matriz V € R™*4
and a matriz C € R¥*4 that the following unitaries |i) |0) = |i) [v;), and |5)[0) — |5) |c;)
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can be performed in time T and the norms of the vectors are known. For any A > 0 and
€1 > 0, there exists a quantum algorithm that computes
(@) 17)10) = [} 1) [d2(vis¢j)) , where [d(vi,¢) — d*(vi, )| < e wp. =1 =24, or
8} 15)10) = i) [3) [(vi, ¢5)) , where [(v, ¢;) = (vi, )] < €@ wp. > 1 —2A

in time O (uvinncjuTlog<1/A>),

€1

It is relatively simple to extend the previous algorithm to one that computes an estimate
of a quadratic form. We will consider the case where we have quantum access to a matrix
A and compute the quadratic forms v7 Av and v7 A~ 'v. The extension to the case when
we have two different vectors, i.e. v7 Au and vT A~ is trivial.

Lemma 31 (Estimation of quadratic forms). Assume to have quantum access to a sym-
metric positive definite matriz A € R"*™ such that ||Al| < 1, and to a matriz V € R"*4,
For € > 0, there is a quantum algorithm that performs the mapping |i) |0) — |i)|5;), for
|s; —5i| <€, where s; is either:

o (lui), Alv)) in time O(“A)
o (Joi), A7 [03)) in time O(ALAY)

The algorithm can return an estimate of (v;, Av;) such that (v;, Av;) — (v;, Av;) < € using
quantum access to the norm of the rows of V' by increasing the runtime by a factor of ||v; H2

Proof. Let’s analyze first the case where we want to compute the quadratic form with A,
and after the case for A~!. Recall that the matrix A can be decomposed in an orthonormal
basis |u;). We can use theorem 28 to perform the following mapping;:

i) [0:) 0) = 1) Zaw ) 10) = 1) Z(Aiaij [, 0) + VI=2|G,1) ) = (2.12)
) (4wl |40, 0) + VT =77 (G, 1) ) = [i) [e) . (2.13)

where N; = Z;L ;. We define |¢;) = |v;,0). Using controlled operations, we can then

create the state:

% [6) (10) (194) + [9a)) + 1) (I¢0) — [¥04))) (2.14)

It is simple to check that, for a given register |i), the probability of measuring 0 is:

1+ [|Av;|| (Avi|v;)

pi(0) = 9

We analyze the case where we want to compute the quadratic form for A~!. For a
C = 0(1/k(A)), we create instead the state:

\/72< i v, 0) + V1 —12|G, 1) ) 3) i) (2.15)

In this case, the probability of measuring 0 in state of Equation 2.14 is

1+C |’A71’L)z’|| <A71’Uz‘|1}i>
2

pi(0) =
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For both cases, we are left with the task of coherently estimating the measurement
probability in a quantum register and boost the success probability of this procedure. The
unitaries that create the states in Equation 2.14 and 2.15 (i.e before a measurement on the

ancilla qubit) describe a mapping: Uy : |i) |0) — 1 |4) (\/pl-(O) lyi, 0) +1/1 —p;(0) |G, 1})
As in [151], the idea is to use amplitude estimation, i.e. theorem 18, along with median
evaluation lemma 14. We can apply amplitude estimation to obtain a unitary

Uali) 10) = 2 18) (v/a Ipi(0), 3, 0) + VI~ @[ 1) (216)

and estimate p;(0) such that [p;(0) —p;(0)| < € for the case of v] Av; and we choose a preci-
sion €/C for the case of v] A~1v; to get the same accuracy. Amplitude estimation theorem,
i.e. theorem 18 fails with probability < %. The runtime of this procedure is given by com-
bining the runtime of creating the state |i;), amplitude estimation, and the median lemma.
Since the error in the matrix multiplication step is negligible, and assuming quantum access
to the vectors is polylogarithmic, the final runtime is O(log(1/6)u(A)log(1/e2)/€), with an
additional factor x(A) for the case of the quadratic form of A~1.

Note that if we want to estimate a quadratic form of two unnormalized vectors, we
can just multiply this result by their norms. Note also that the absolute error ¢ now
becomes relative w.r.t the norms, i.e. € ||vz||2 If we want to obtain an absolute error €,
as in the case with normalized unit vectors, we have to run amplitude estimation with
precision € = O(e/ ||v;|?). To conclude, this subroutine succeeds with probability 1 —

p(A) log(1/7) log(1/€2)

and requires time O( -

), with an additional factor of k(A) if we were to

consider the quadratic form for A=1, and an additional factor of ||v; || if we were to consider
the non-normalized vectors v;. This concludes the proof of the lemma. O

Note that this algorithm can be extended by using another index register to query for
other vectors from another matrix W, for which we have quantum access. This extends
the capabilities to estimating inner products in the form |i) ) |w! Av;).
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Chapter 3

Classical machine learning

In this chapter, we review and introduce the part of classical machine learning that has been
studied in the course of this thesis. Special emphasis is put on formalizing the connection
between the machine learning problems and their linear-algebraic formulation.

3.1 Supervised learning

Supervised (or predictive) machine learning is the part of machine learning that deals
with supervised datasets, i.e. data where each sample x; comes along with supervised
information, i.e. a piece of data y;. It helps the intuition thinking that the supervised
information comes from a stochastic process that maps vectors x; to vectors y;. The goal
is to model the mapping on the whole input space X to the output space ) given a set
of input-output pairs D = {(x;,y;)}"o. Usually, the input space is a subset of R?, and
the output space is usually either R or a finite set K of small cardinality. It is practical,
for the sake of exposition to consider the training set organized into a matrix X € R"*¢
and the matrix Y € R" or Y € [K]". The components of a vector z;, i.e. a row of X
are called features, attributes, or covariates. The matrix X is called design matriz, or
simply the dataset. The vector y; is called the response variable. If the response variable
is categorical (or nominal), the problem is known as classification, or pattern recognition.
If the response variable is real-valued we interpret this problem as learning a function
f:R%— R and we call this problem regression. Different assumptions on the structure of
f lead to different machine learning models. Each model can be trained (or fitted) with
different algorithms.

3.2 Unsupervised learning

Unsupervised learning [110], which sometimes goes under the name of knowledge discovery,
is the part of machine learning that deals with understanding unlabeled data. In the dataset
D = {x;}}'_, we don’t have anymore any supervised information. In this case, it is common
to understand the structure of the process generating the samples by formalizing a density
estimation problem: we want to learn the parameters 6 of a function p(z;|6) that models the
distribution of the process that has generated the samples. The importance of unsupervised
learning lies in the stunning similarity with human and animal learning. Furthermore,
most of the dataset that we have are unsupervised, as it is costly to provide supervised
information from experts or humans. The most common example of unsupervised learning
is clustering, where we want to partition into groups a given dataset. As an example,
imagine having a set comprising of images of cats and dogs, without knowing which image
is a cat or which is a dog. An unsupervised learning algorithm is supposed to learn how
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to split the dataset correctly, by understanding the characteristics and features that allows
discriminating between images of different kinds. Just to name a few of the more concrete
examples, in astronomy, clustering is often used to discover new kinds of stars, in biology,
it is used to find new kinds of cells, in cybersecurity, to perform anomaly detection, and
SO on.

We refer to the number of clusters in the dataset with a letter K. The first goal in
clustering is to understand the right number of different groups in the data (which might
not be known a-priori). The second goal is to estimate which cluster each point x; belongs
to. We define z; for z; € [K] as the cluster to which point z; is assigned to. The value of z;
is often called hidden or latent variable. Unsupervised learning can be seen as the task of
guessing the value of the hidden variable, by computing z; = arg maxy, p(z; = k|x;,0). For
this, an unsupervised learning algorithm has to model (implicitly or explicitly ) the joint
probability distribution p(x,y).

While latent variables have extensive applications, in this thesis we will focus on the
case where latent variables are used to represent a discrete latent state (as in clustering).

3.3 Generative and discriminative machine learning

There is another insightful way of organizing machine learning models. They can either be
generative or discriminative. A discriminative model learns just the mapping p(y|z), and
provides a way to classify points (i.e. infer the value of y;), without actually knowing “how”
the point x; has been generated. Examples of such models are: k-nearest neighbors, Logistic
regression, Support Vector Machines, Decision Trees, Random Forest, Neural Networks,
and so on. Examples of such models in this thesis are the QFDC, QSFA in chapter 4. On the
other way, generative models output a model for the joint probability distribution p(z,y).
This is similar to the unsupervised learning case, but in this cases the dependence on y
(which can be a hidden variable) is made explicit. In general, discriminative models make
fewer assumptions, as generative models often need to do some assumption on the structure
of p(x). Such generative models are one of the most promising approaches to unsupervised
problems. The goal of a generative model is to learn a probability distribution that is most
likely to have generated the data collected in a training set. Fitting the model consists of
learning the parameters of a probability distribution p in a certain parameterized family,
that best describes our vectors x;,y;. In case the data is unsupervised, generative models
learn the probability distribution p(x;) assuming the existence of some hidden variables
z;. Examples of such models in this thesis are g-means and GMM, i.e. chapter 5 and
6. A possible way to fit a generative model is to formulate the problem of finding the
parameters of the family of distribution as an optimization problem. This is often done
using the so-called maximum likelihood estimation (MLE). One can think of the likelihood
as the function that we use to measure how good a model is for explaining a given dataset.
For a given machine learning model with parameters -, the likelihood of our data set X
is the probability that the data have been generated by the model with parameters ~,
assuming each point is independent and identically distributed. We think of the likelihood
as a function of v, holding the dataset X fixed. For p(x;|7y) the probability that a point x;
comes from model v, the likelihood is defined as:

LX) =[] plail) (31)

From this formula, we can see that in order to find the best parameters v* of our model
we need to solve an optimization problem. For numerical and analytical reasons, instead of
maximizing the likelihood L, it is common practice to find the best model by maximizing
the log-likelihood function £(v; X) = log L(v; X) = Y., logp(x;|y). In this context, we
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want to find the model that maximizes the log-likelihood:

Yirp = argmax Y log p(i|y). (3:2)
v i=1

The procedure to calculate the log-likelihood depends on the specific algorithm used
to model the data. A possible solution would be to use a gradient-based optimization
algorithm on ¢. It is often the case that, due to the indented landscape of the likelihood
function, gradient-based techniques often do not perform well. Therefore, it is common
to find other strategies to find do maximum likelihood estimation. One of which is the
Expectation-Maximization (EM) algorithm, detailed in chapter 6.

3.4 Dimensionality Reduction

Dimensionality reduction (DR), a technique used both in supervised and unsupervised
learning, refers to the procedure by which the dimension of the input data is reduced while
retaining most of the meaningful information contained therein. It is often a necessary
step when trying to solve practical problems in machine learning and there are many
techniques for performing it. For instance, it is used to decrease the variance of a model,
since it can lead to models with a fewer number of parameters, and it might just reduce the
noise in the data. It is also necessary when the runtime of the algorithm has polynomial
dependence on the number of features, as it is often the case for nowadays datasets. In
the context of big data analysis, by removing features that carry low information (like
features that are strictly proportional to other features, or features for which the data
contains too little information), it is possible to optimize the storage space. It can be
also used for data visualization. Most importantly, supervised algorithms often suffer from
the curse of dimensionality: by allowing large dimensionality of data, the informative
power of the data points in the training set decreases, thus leading to a degradation in
classification performances. One solution to improve the accuracy would be to increase the
number of elements in the training set, but this is not always possible nor desirable, so the
common route is to decrease the dimension of the data. Mathematically, the idea of the
dimensionality reduction algorithms is to map vectors from a high dimensional space X to
a low dimensional space ), such that the most meaningful information (according to some
criteria) is preserved. Of course, understanding which criterion to use is far from trivial.

The choice of the right DR algorithm depends on the nature of the data as well as
on the type of algorithm that will be applied after the dimensionality reduction. A very
well-known DR algorithm is the Principal Component Analysis (PCA), which projects the
data points onto the subspace spanned by the eigenvectors associated to the k largest
eigenvalues of the covariance matrix of the data. In this way, the projection holds “most of
the information” of the dataset. It is possible to show [110] that for a subspace of dimension
k, this choice of eigenvectors minimizes the reconstruction error, i.e. the distance between
the original and the projected vectors. However, PCA is not always the best choice of
dimensionality reduction. PCA projects the data into the subspace along which the data
has more variance. This does not take into consideration the information that different
points might belong to different classes, and there are cases in which PCA can worsen
the performance of the classifier. Other methods, like Fisher Linear Discriminant and Slow
Feature Analysis take into account the variance of every single class of points. Indeed, FLD
projects the data in a subspace trying to maximize the distance between points belonging
to different clusters and minimizing the distance between points belonging to the same
cluster, thus preserving or increasing the accuracy.
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3.5 The Generalized Eigenvalue Problems in Machine
Learning

Here we review the connection between the so-called Generalized Eigenvalue Problem
(GEP) and some models in machine learning. In classical literature, this is a well-known
subject [67, 48, 31].

Definition 32 (Generalized Eigenvalue Problem). Let A, B € R¥? be two SPD matrices.
The GEP is defined as:
AW = BWA (3.3)

The columns w; € R of W and the values \; = Ay; € R of the diagonal matriz A are the
so-called generalized eigenvector and eigenvalues.

The generalized eigenvalue problem is denoted by (A, B) (note that the order in the
pair matters). As is evident, the canonical eigenvalue problem is a special case of the GEP
where B = I. In this work, we will often consider the case when matrices A and B consist
of expectation values from stochastic processes, that is, these are covariance matrices of
some sort. Furthermore, while A can be symmetric semi-positive definite, we require B to
be invertible, and thus symmetric positive definite. The GEP is related to the so-called
Raylight quotient: a variational extremum problem related to the ratio of two quadratic
forms involving matrix A and B:

. wT Aw

p(w) T wTBw

There many different optimization problems that can be reduced to a GEP, which we

report here for completeness [18, 67]. One can see that the norm of w does not change the

value of the optimization problem. Therefore, we can impose an additional constraint on

w. In this way, we can reformulate the problem as a constrained optimization problem,

without losing any solution. This constraint is w?” Bw = 1. We now describe the relation
between Equation 3.4 and Equation in definition 32.

(3.4)

Optimization Form 1 (Vector form) For ¢ € R?

mgx w’ Aw (3.5a)
subject to wl Bw =1 (3.5b)

We can reduce the optimization problem 3.5 to the GEP using Lagrangian multipli-
ers. The Lagrangian equation associated to this optimization problem is £ = w’ Aw —
MwT Bw — 1). Equating the derivative of the Lagrangian to 0 gives:

g—ﬁ = 2Aw — 2ABw = 0 — 2Aw = 2ABw — Aw = ABw. (3.6)
w

This can be generalized to multiple vectors w;, and expressed in Matrix form, as follows:
Optimization Form 1 (Matrix form) For W € R4*4,

max TrWT AW] (3.7a)
subject to ~ WIBW =1 (3.7b)
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There is a dual formulation to this problem, that consists in minimizing the Frobenius
norm of a matrix. This formulation occurs often as the dual formulation of the previous
optimization problems. For instance, instead of maximizing correlation, one would like to
minimize some error.

Optimization Form 2 (Vector Form) For w € R? and a matrix X € R¥*".

min X —ww' X||% =Tr[XTX — XXTww?] (3.8a)

subject to wlBw =1 (3.8b)

This is the GEP (X X7, B).

Optimization Form 2 (Matrix Form) For w € R?, and a matrix X € R?*",

min X —WWTX||% =Tr[XTX - XXTWWT] (3.92)
subject to WTBW =1 (3.9b)

This is the GEP (X X7, B).

Classical algorithms Computationally, fast algorithms for solving the GEP have been
proposed through the years [65, , 31]. In general, a simple-but-dirty solution would be
to left multiply both sides of Equation 3.3 by B~!, and re-conduct this to the canonical
eigenvalue problem. Unfortunately, this solution suffers often from problems of numerical
instability and is rarely the preferred solution. It is well-known that symmetric eigen-
value problems are more stable to numerical errors. For this, a slightly more intricate
solution, but computationally more expensive, consist of making the matrix A symmet-
ric: more stable to perturbations and numerical errors [150]. Other classical random-
ized algorithms for solving the GEP exist. Among the best classical algorithms, we cite
[65], where they propose an algorithm to extract the top k solutions of a GEP in time
O(% log(1/€)log(kk/p))) where z is || Allo + || B|lo,  is the biggest condition number be-

tween k(A) and k(B), and p is the relative eigenvalue gap, i.e. 1— |)‘|’;\:|1|. These algorithms

might not give the best possible runtime in all the machine learning models described be-
low. In fact, according to the definition of the matrices A and B, other algorithms for
extracting the generalized eigenvectors might be used instead. We will see that quantum
computers might lead to better runtimes, by removing the dependence on the size of the
two matrices (it becomes polylogarithmic), albeit with a worsening in the other parameters.
For this kind of runtimes, the price that we have to pay is a preprocessing step, detailed
in the previous chapter. We conclude this section with a useful observation from classical
literature.

Lemma 33 ([65]). Let (w;,0;), be an eigenpairs of the symmetric matric B~/2AB~1/2,

Then B=Y2w; is an eigenvector of B~ A with eigenvalue o;.
Proof. The proof follows from noting that:

B YA(B™Y2w;) = B~Y2(B~V2AB~ V2w, = 0, B~/
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3.5.1 Slow Feature Analysis - SFA

SFA is a dimensionality reduction algorithm, better detailed in chapter 4. Here, for con-
sistency, we report the definition of the optimization problem, as stated in [23]. For a
dataset consisting in a set of n different d-dimensional vectors represented by the matrix
Xnxd along with their labels I; € [k], stored in a matrix L € [K]|". Given a training set
X, L of k different classes, we expect to learn k — 1 functions g;(z;) with j € [k — 1] whose
output y; = [g1(z(2)) - - - gx—1(;)] is constant and similar for the training samples of the
same class. More formally, for a a the normalization factor defined as: Z Bl (T")
to minimize for all j:

we want

Aj = Ayy) = Z > (g — g;(=")(1)))? (3.10)
k: 1s,teTy
s<t

with the following constraints:
L X ik 0@ (@) =0 vj € [K 1]
2. NZk 12; 1 95(@® ()2 =1 Vje[K-1]

3. % Yoot ity 95(@(B) gy (x())P) =0 Vo < j e [K 1]

Define B = X7 X as the covariance matrix and A = X7 X is the derivative covariance
matrix. This matrix X € R™*¢ is obtained by taking the pairwise difference between
vectors that belongs to the same class. This is a kind of "derivative" between random pairs
of elements in the dataset. The solution consist in computing the K — 1 eigenvector of the
Generalized Eigenvalue Problem (GEP):

AW = BWA (3.11)
The objective function that we want to minimize in this case is given by:

wl Aw
wT Bw

Solving this problem consists in making the matrix B the identity, i.e. whitening the
data. A dataset is said to be whitened when the covariance matrix of the data is the
identity. In practice we multiplied by X ~'/2 and redefined A accordingly, by computing
the covariance matrices of the whitened derivatives vectors.

While the original formulation of SFA is about finding vectors that represent the direc-
tions of slowly varying features, in the context of supervised learning these vectors represent
the subspace that maximally separates different clusters. It has been shown that solving
the optimization problem upon which SFA is based is equivalent to other dimensionality
reduction algorithms, like Laplacian Eigenmaps [136] and Fisher Linear Discriminant [95],
thus a quantum algorithm for SFA also provides algorithms for Laplacian Eigenmaps and
Fisher Linear Discriminant.

min Jgpa(w) == (3.12)

3.5.2 Linear Discriminant Analysis - LDA

Linear Discriminant Analysis is an unsupervised dimensionality reduction algorithm. LDA
is known to be optimal in the sense that it projects the data in the subspace that minimize
the distance between points of the same cluster and maximize the distance between points
that belongs to different clusters. Sometimes the name LDA is used as a synonym for
Fisher Discriminant Analysis, but we reserve the name FDA for the case when there are
only two classes.
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For n labeled points (z;,y;) for z; € R? and y; € [K] we defined pu; = ﬁ Ziesj x;

and p = %Zle « % The matrix Sy is the so called within class covariance matrix, and
the matrix Sp is the between-class covariance matrix. They are defined as:

Sw = Z Z (7 — pe)(x — NC)T (3.13)

JE[K]€[lS5]]

Sp =Y [85l(pe — ) (pe — )" (3.14)

JE[K]
The optimization problem that we are trying to solve with LDA is:

wT Spw

max JFLD(U)) : (315)

T wTSyw

Note that for very small a, the contribution of Sp to A can be neglected, making
A= £Sw. The GEP formulation of LDA is therefore

Spw = AS,w

but instead of taking the smallest eigenvalues, we select the eigenvectors corresponding to
the biggest eigenvalues.

3.5.3 Canonical Correlation Analysis - CCA

Canonical Correlation Analysis (CCA) is an algorithm for finding correlations between
two different representations of the same data. Geometrically, the problem of finding
correlations can be reduced to the problem of finding basis vectors for two sets of variables
such that the correlation between the projections of the variables into the new basis vectors
is mutually maximized [79]. A tutorial on CCA can be found in [119]. The input of the
CCA problem is a dataset that consists of tuples of vectors {(x;,:)}", where z; € R%
and y; € R%. Assuming the data is normalized in order to have zero mean and unit
variance on each component, the sample covariance matrices of the data are Y x = %X TX
and Xy = LYTY. We define the cross-covariance matrix Xyy as X Ty and analogously
Yyx as Y* X (sometimes these matrices are called in literature cross-scatter matrix).

It is simpler to introduce the problem solved by CCA as the problem of finding the
features w,,w, such that the directions Xw, and Yw, in the column space of X and ¥
have a minimal angle between each other:

Wy, Wy = arg max cos((Xwg, Yw,))

arg ma (Xw,) (Yw,)
= X
e V(Xwa)T (Xwz)y/(Ywy) (Ywy)
wy Bxy wy
= arg max

Wa Wy \/ wgSXme /wgSyy’wy

Again, we can see that the solution is independent on the norm of the weight vectors
Wy, wy. Thus, we can solve the optimization problem with a constraint on the value of the
norms of the weight vectors, i.e that w{EXwa =1 and ngyywy = 1. We thus have
formulated a constraint optimization problem:

Wy, wy = arg max || Xw,,, Yw, | such that || Xw,||> = [|[Yw,|* =1 (3.16)
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We reformulate this optimiation problem using Lagrangian multipliers:
L( W, Wy, Az, Ay) = waway — )\zwaXXwI — )\ywyTEyywy

Taking derivatives with respect to w, and w,, and setting the equations to 0 gives the
following systems of equations:

Xy Wy = AgXx x Wy
Zyx’wl- = )\yxyywy

As AxwaXwa = waxywy = ngyxwl = )\ngEyywy, and as waXXwI =
ngyywy = 1 we can observe that the two eigenvalues A, and A, are identical, and we
denote them just with .

5 — A x W
XY Wy XXW (3.17)
Ly xwe = Ayywy
These system of equation represent the following GEP [18, 79], in a form that makes

explicit both w, and w, in a single equation:

(22;( E?) (Z;) = (EEX ESY) (ZZ) (3.18)

As we know, this GEP can be restated as a canonical eigenvalue problem:

0 ZX{XZXY> <ww) (waj)
_ =A 3.19
<ZY%/EYX 0 Wy Wy (3.19)

This can be made symmetric by setting the vectors v, = Ei(/;wz and vy = E;/}z,wy

0 SYESxv Yo () (v
—1/2 —1/2 A (3.20)
Yyy ByxYyxx 0 Yy Yy

There is an alternative formulation of the GEP for CCA. Recalling that we assume the
matrix E;}Y is invertible, we can express w, in the first equation of the system of equations
3.17 as

w — Syy Sy X Wy
Y A

Via substitution in the linear system, i.e. in Equation 3.17, we can express the singular

vectors w, as solutions of the following GEP:

(3.21)

nyz;;Zy){ww = )\ZZXwa (322)

Then, we are able to use Equation 3.21 to find the corresponding w,. Again, using the
fact that Y x x is invertible, we can reconduct this GEP to a symmetric eigenvalue problem

by recalling that we can define ¥ xx as Yxx = Zﬁ(/)z( Zi(/)z( This is the approach preferred
in [79, 16]. The solution of the CCA can be also expressed using SVD, as discovered Halay
in 1957 [82], and suggested again Ewerbring and others in 1990 [56]. First, we consider the
SVD of

YxxExy vy = USVT (3.23)

The singular values of ¥ correspond to the canonical correlation. The matrices of canonical
correlation W, and W, are obtained as:

W, =S 20 and W, = $,1/%V
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3.5.4 Gaussian Information Bottleneck Method - GIBM

The Information Bottleneck Method (IBM) is a general and powerful model of learning,
that has its foundation in information theory. The IBM has been originally proposed
as a way to extract the relevant information from a random variable X, with respect to
another random variable ), while compressing X as much as possible. With such a broad
formulation, the IBM can be applied to both supervised and unsupervised problems (as
the ) can be just thought as being a hidden variable for the unsupervised case). The
compressed representation that we extract from X can be thought as of another random
variable, that we can call T. It can be shown that 7' is an approximation of a minimal
sufficient statistic of X w.r.t. V.

Definition 34 (Sufficient Statistics [61, 77]). . Let Y € Y be an unknown parameter
and X € X be a random variable with conditional probability distribution function p(x|y).
Given a function f : X — S, the random variable S = f(X) is called a sufficient statistic
forY if:

VeeX,ye):

3.24

PX=zlY =y,S=3)=P(X =x|S =3s). (3:24)

The meaning of definition 34 is that S captures all the information about Y that is
available in X. As a consequence, we can state the following theorem:

Theorem 35. Let S be a probabilistic function of X. Then S is a sufficient statistic for
Y if and only if:
I(S;Y)=I1(X;Y)

Here, I(X;Y) denotes the mutual information between the random variable X and
the random variable Y. It is simple to note that, according to this definition, the identity
function makes the random variable X a sufficient statistic for Y. To make something useful
out of this definition, we should introduce a way of compressing information contained in
X. For this, comes to our aid the definition of minimal sufficient statistic.

Definition 36. (Minimal Sufficient Statistic) A sufficient statistic S is said to be minimal
if it is a function of all other sufficient statistics, i.e.:

VT, T is sufficient statistic = 3 g;S = g(T). (3.25)

The relation between minimal sufficient statistics and information theory is stated in
the following theorem:

Theorem 37 ([77]). Let X be a sample drawn from a distribution function that is deter-
mined by the random variable Y. The statistic S is an MSS for Y if and only if it is a
solution of the optimization process

min I(X;T). (3.26)

T:is sufficient statistic

Using theorem 35 we can restate the previous optimization problem as

min I(X;T). (3.27)
T:1(T;Y)=I(X;Y)

The goal of the IBM is to find a compressed representation of X that preserves as much
information as possible about the random variable Y. In this sense, T"is a minimal sufficient
statistic for random variable X and Y. The trade-off is obtained using a Lagrangian
multiplier which we call 5. Note that we are interested in the stochastic maps from X to
T and T to Y. Using theorem 35, we can restate the previous theorem as:
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Definition 38 (Information Bottleneck).

min I(X; X) — BI(X;Y) (3.28)
p(Z|z)

The first term is meant to measure the compression, and the second term is meant to
measure the relevance of the sufficient statistic 7" with respect to Y. In the IBM, T is meant
to be a representation of X in a “meaningful semantic space”. The Lagrangian multiplier
B € [0,00) decides the trade-off representation and compression. Surprisingly enough, the
parameter § allows one to train models that are explicit with respect to the bias/variance
trade-off. This optimization problem is closely related to the Rate-Distortion theorem of
Shannon, which described the trade-off between compression and resilience to errors in a
channel. For further information, we refer to [146, 134]. Far from being just a theoretical
tool to analyze learning, the IBM has been used to solve a stack of problems in machine
learning [34, ]. According to the problem under consideration, the IB can be computed
via a plethora of different algorithms [134]. There is one case where the solution of the IB
can be computed analytically: under the assumption that the random variables X,Y are
jointly multivariate Gaussian distributions. Let the cross-covariance matrices be defined
as usual, i.e. Uxy = XTY and Zyx = YT X, where we assume that the matrices X
and Y are scaled to have features with zero means and unit variance. We also define the
conditional covariance, or canonical correlation matrix as: Yxjy = Xx — X XyE;,lEy X.
In the Gaussian Information Bottleneck, we need to access the left singular vectors of:

A=SxyIy

The number of eigenvectors to extract is a function specified by a trade-off parameter 5.
It is straightforward to see that GIB and CCA are two ways of looking at the same
problem. Recall the GEP problem of CCA in Equation 3.22 is:

Exyz;%/Zyx’wx = )\QZXsz (329)

The matrix A is defined as I — Exyz;IZyxz)_(IX. Adding or removing the identity
matrix from another matrix will only shift its spectrum, so we can consider the left singular
vectors of X XyE;lZy XZ;(lx. Taking the transpose of this matrix, we see that this is
exactly the same matrix of the GEP in Equation 3.29.
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Chapter 4

Quantum slow feature analysis
and classification

4.1 Introduction to Slow Feature Analysis

Slow Feature Analysis (SFA) is a dimensionality reduction technique proposed in the con-
text of computational neurosciences as a way to model part of the visual cortex of humans.
In the last decades, it has been applied in various areas of machine learning. In this chapter
we propose a quantum algorithm for slow feature analysis, and detail its application for
performing dimensionality reduction on a real dataset. We also simulate the random error
that the quantum algorithms might incur. We show that, despite the error caused by the
algorithm, the estimate of the model that we obtain is good enough to reach high accuracy
on a standard dataset widely used as benchmark in machine learning. Before providing
more details on this result, we give a brief description of dimensionality reduction and
introduce the model of slow feature analysis in this context.

SFA has been shown to model a kind of neuron (called complex cell) situated in the
cortical layer in the primary visual cortex (called V1) [22]. SFA can be used in machine
learning as a DR algorithm, and it has been successfully applied to enhance the perfor-
mance of classifiers [156, 23]. SFA was originally proposed as an online, nonlinear, and
unsupervised algorithm [152]. Its task was to learn slowly varying features from generic
input signals that vary rapidly over time [23, ]. SFA has been motivated by the tem-
poral slowness principle, that postulates that while the primary sensory receptors (like the
retinal receptors in an animal’s eye) are sensitive to very small changes in the environment
and thus vary on a very fast time scale, the internal representation of the environment in
the brain varies on a much slower time scale. The slowness principle is a hypothesis for
the functional organization of the visual cortex and possibly other sensory areas of the
brain [153] and it has been introduced as a way to model the transformation invariance in
natural image sequences [156]. SFA is an algorithm that formalizes the slowness principle
as a nonlinear optimization problem. In [28, 138], SFA has been used to do nonlinear blind
source separation. Although SFA has been developed in the context of computational
neurosciences, there have been many applications of the algorithm to solve ML related
tasks. A prominent advantage of SFA compared to other algorithms is that it is almost
hyperparameter-free. The only parameters to chose are in the preprocessing of the data,
e.g. the initial PCA dimension and the nonlinear expansion that consists of a choice of a
polynomial of (usually low) degree p. Another advantage is that it is guaranteed to find
the optimal solution within the considered function space [55]. For a detailed description
of the algorithm, we suggest [137]. With appropriate preprocessing, SFA can be used in
conjunction to a supervised algorithm to acquire classification capabilities. For instance
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it has been used for pattern recognition to classify images of digits in the famous MNIST
database [23]. SFA can be adapted to be used to solve complex tasks in supervised learning,
like face and human action recognition [75, 156, 142].

We can use SFA for classification in the following way. One can think of the training
set a set of vectors z; € R?, i € n. Each x; belongs to one of K different classes. A class
Ty, has |T| vectors in it. The goal is to learn K — 1 functions g;(z;),j € [K — 1] such
that the output y; = [g1 (i), -, gx—1(x;)] is very similar for the training samples of the
same class and largely different for samples of different classes. Once these functions are
learned, they are used to map the training set in a low dimensional vector space. When a
new data point arrive, it is mapped to the same vector space, where classification can be
done with higher accuracy. SFA projects the data points onto the subspace spanned by the
eigenvectors associated to the k smallest eigenvalues of the derivative covariance matrix of
the data, which we define in the next Section.

4.2 The computational problem and the SFA Algo-
rithm

Now we introduce the optimization problem in its most general form as it is commonly
stated for classification [23]. Let a = Zszl (‘T;'). For all j € [K — 1], minimize:

K
M) =30 3 (g5(w) - g5w0)?
k=1 s,teTy

with the following constraints:

K

L. % 21 ZieTk gj(z:i) =0
K

2. % Zk:l ZieTk gj(xi)Q =1

K .
3. %Zkzl ZieTk 9j(xi)gu(xi) =0 Vv < j

The minimization of the delta values A(y;) encodes the requirement on the output
signal to vary “as slow as possible”, and thus the delta values are our measure of slowness.
They are the average of the square of the first order derivative (over time) of the j-th
component of the output signal y;. The first requirement states that the average over time
of each component of the signal should be zero, and it is stated just for convenience, such
that the other two requirements take a simple form. The second requirement asks for the
variance over time of each component of the signal to be 1. It is equivalent to saying that
each signal should carry some information and avoid the trivial solution g;(-) = 0. The
third requirement is to say that we want the signals to be decorrelated with each other.
This also introduces an order, such that the first signal is the slowest, the second signal
is the second slowest and so on. The first and the second constraint also avoid the trivial
solution y; = 0. Intuitively, the decorrelation constraint forces different functions g; to
encode different “aspects” of the input, maximizing the information carried by the output
signal.

In order for the minimization problem to be computationally feasible at scale, the
g;’s are restricted to be linear functions w; such that the output signal becomes y; =
[wlz;, - -wk _|2;]7 or else Y = XW, where X € R"*? is the matrix with rows the
input samples and W € R¥>(K=1 the matrix that maps the input matrix X into a lower
dimensional output Y € R"*(K=1_ In case it is needed to capture nonlinear relations in
the dataset, one performs a standard nonlinear polynomial expansion on the input data as
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preprocessing. Usually, a polynomial expansion of degree 2 or 3 is chosen. For example we
can take:

2 2 2
T = [x1,.’1}2,l‘3] — [1‘1,.1‘1332,$1$3,$2,$2$3,x3,x1,x2,x3] .

The choice of the nonlinear expansion is important for using SFA in machine learning
contexts. If it is a low dimensional expansion, it might not solve the task with high accuracy,
while if the dimension is too high, it might overfit the training data, and therefore not
generalize properly to test data. This technique also goes under the name of polynomial
kernel.

We also need to satisfy the constraint on the average of the signal being zero and have
unit variance. This is not a strong requirement, since it can be enforced beforehand, by
preprocessing the dataset. This requires only linear time with respect to the dimensions of
the data, and in practice consist in removing the mean and scale the components by their
variance. Namely, we assume that the j-th component of the i-th vector in the dataset
satisfies the condition:

SRV 1 ()1 N
VEI[((:); — El(3:);])?]
where with Z(i) we define a raw signal with arbitrary mean and variance, E[Z;(¢)]
the expected value of a single component of the vectors. This allows us to rewrite the
minimization problem including the constraints of zero mean and unit variance. We can
restate the definition of the delta function as the the GEP in Optimization Form 3.5:

N ke (@)
i) = w! Bw;’ :
where the matrix B is called the sample covariance matrix and defined as:
1
B = - al = XxT .
. Z iz, =X X (4.2)
i€[n]
and the matrix A is called the sample derivative covariance matrix and defined as:
1E I . 7
A:Zﬁ ;— X . — -/Tzf ' ' ::.T.. .
az > (@i —wo)(zi - 2i) aZXk Xp=XTX (4.3)
k=14 i €Ty, k=1
i<’

Note also, that we can approximate the matrix A by subsampling from all possible pairs
(z4,x4) from each class and this is indeed what happens in practice.

4.2.1 Slowly varying signals

We formalize the concept of slowly varying signals. While this won’t have any utility in the
classical algorithm, it will allow us to bound nicely the runtime of the quantum algorithm,
in the case when the data has “structure” that can be extracted by the SFA algorithm. In
general, a slow signal is a signal that change slowly over time. This concept is formalized
in the context of SFA by requiring that the whitened signal can be reconstructed without
too much error from the projection on a few slow feature vectors. Formally, for a given K,
and a set of slow feature vectors wy ... wgx_1, we define a slowly varying signal as follows.

Definition 39 (Slowly varying signal). Let X € R"*? and Y € [K|" be a dataset and its
labels. Let the rows x; of X have whitened representation z;. For the K — 1 slow feature
vectors wj, j € [K], lety; be the slow feature representation of x;. We say that X is yx -slow

if:
n
Zi:o [EAl <
n S VK
> izo lill
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If we use SFA for doing dimensionality reduction in the context of supervised learning,
a dataset is slowly varying if all the elements in the same class are similar to each other. In
this way, by projecting the original images in the subspace spanned by a small number of
slow feature vectors, we can reconstruct most of the information of the original dataset. We
stress that this assumption is not needed for the quantum algorithm to work, but instead
it will only be useful to give guarantees on the runtime of the algorithm.

4.2.2 The SFA algorithm

The SFA algorithm basically provides a solution to the generalized eigenvalue problem
AW = ABW and outputs the eigenvectors corresponding to the smallest eigenvalues. As
we said we assume that the data has been normalized and polynomially expanded.

The first step of the algorithm is to whiten the data. This will reduce the problem
into a normal eigenvalue problem; the second step is to perform PCA in order to find the
eigenvalues and eigenvectors. We refer to [55] for a more complete description.

Step 1: Whitening the data

Recall that X € R"*4 A, B € R¥?  We now show how to whiten the data by right
multiplying with the matrix B~%/2 = [(XTX)]=%2. Then, the input matrix becomes
Z = XB~'/2 and the covariance matrix of the whitened data Z7 Z is thus the identity.

Claim 40. Let Z := XB~'/? be the matriz of whitened data. Then Z¥Z = 1.

Proof. Let X = UXVT. We defined B = VX2VT. As Z = USVT(VE-WT) = UIV It
follows that ZTZ = 1I. O

Step 2: Projection in slow feature space

The second step of SFA consists of outputting the K — 1 “slowest” eigenvectors of the
derivative covariance matrix of the whitened data A := Z7Z, where Z is defined similar
to X by using the whitened samples instead of the original ones. Note that taking the
derivatives of the whitened data is equal to whitening the derivatives.

Claim 41. Let A= ZTZ. Then A= (B~Y/)TXTXB~1/2,

Proof.

A = ZT7== Z Z i — 2ir) 1—zi/)T

k 14,4 €Ty
i<i’

K
1

_ 1/2 T — oW — 2T B2
. E E z)(z; — xir)

k=1 1,1 ETk
i<’

— (371/2)TXTX371/2
O

This observation allow us to whiten the data with a quantum procedure. Recall that
the matrix A is usually approximated with a small fraction of all the possible derivatives,
roughly linear (and not quadratic) on the number of data points. In our case we take the
number of rows of the derivative matrix to be just double the number of data points, and
in the experiment we show that this does not compromise the accuracy.
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SFA - Algorithm 1 (Classical) Slow Feature Analysis

Require:
Input X € R"*? (normalized and polynomially expanded), and K < d € N

Ensure:
Y = ZW, where Z = X B~'/? is the whitened input signal, and W € R**(E=1) are the
K — 1 eigenvectors of the matrix A = Z7Z corresponding to the smallest eigenvalues

1: Whiten the signal: Z := XB~'/2, and create Z from Z.

2: Perform PCA on the derivative covariance matrix A = Z7Z of the whitened data.

3: Return Y = ZW, the projection of whitened data onto W, the K — 1 slowest eigen-
vectors of A

4.3 Quantum Slow Feature Analysis

We are finally ready to put forward a quantum procedure for SFA. Specifically, we want to
map the input matrix X to the output matrix Y = XW, and then we will see how to esti-
mate classically the slow feature vectors W € RUS=1xd_ For this, we assume to have quan-
tum access to the matrices X and X, as in definition 5. We start by describing a circuit that
approximately performs the unitary Ugspa : |X) — |Y) where |X) is the quantum state
we obtain by having quantum access to X, the dataset, and |Y) := W S o Nyl 12) i)
As the classical algorithm, QSFA is divided in two parts. In the first step we whiten the
data, i.e. we map the state |X) to the state |Z) = |[XB~'/2), and in the second step we
approximately project |Z) onto the subspace spanned by the smallest eigenvectors of the
whitened derivative covariance matrix A = Z7Z.

Step 1: Whitening the data Recall that X = )", ouvl € R4 and A, B € R¥*4,
We now show how to whiten the data having quantum access to the matrix X. As B~1/2
is a symmetric matrix with eigenvectors the column singular vectors of X and eigenvalues
equal to 1/|o;|. Using quantum linear algebra procedure, i.e. theorem 28, we can multiply
with B~1/2 our state | X). Thus, we have the following corollary.

Corollary 42 (Whitening algorithm). Assume to have quantum access to X =, oc;u;v} €
R™%? a5 in theorem 8. Let Z = X B='/2 the matriz of whitened data. There exists a quan-
tum algorithm that produces as output a state |Z) such that ||Z) —|Z)| < € in expected
time O(k(X)u(X)log1/e)).

Step 2: Projection in slow feature space The previous Corollary gives a way to
build quantum access to the rows of the whitened matrix Z, up to some error e. Now
we want to project this state onto the subspace spanned by the eigenvectors associated to
the K — 1 “slowest” eigenvectors of the whitened derivative covariance matrix A := Z7Z,
where Z is the whitened derivative matrix Z = XB~1/2. Let 0 a threshold value and § a
precision parameter, that governs the error we tolerate in the projection threshold. Recall
that A<g s we denote a projection of the matrix A onto the vector subspace spanned by
the union of the singular vectors associated to singular values that are smaller than 6 and
some subset of singular vectors whose corresponding singular values are in the interval
[0, (1+9)0].

To perform the projection, we will need a threshold for the eigenvalues that will give
us the subspace of the K — 1 slowest eigenvectors. A priori, we don’t know the appropriate
threshold value, and thus it must be found experimentally through binary search since it
depends on the distribution of singular values of the matrix representing the dataset. We
can now describe and analyse the entire QSFA algorithm.
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As in the previous section, we note that the eigenvalues of A, are the squares of the
singular values of Z, and the two matrices share the same column space: Z =UXVT, and
A, =V2vT, Clalm 41 tells us that whitening the derivatives of the signal is equal to
taking the derivatives of the whitened data. theorem 29 provides exactly the procedure for
accessing the rows of Z, since we know how to multiply with X and with B~1/2,

QSFA 2 Quantum Slow Feature Analysis

Require: )
Quantum access to matrices X € R™*% and X € R"*¢ parameters €, 6,5, > 0.

Ensure: o o
A state |Y) such that |[Y) — V)| <¢, with Y = AL, ;A<p 52

1: Create the state |X) := HXll\F S Nl iy |)

2: (Whitening algorithm) Map |X) to [Z) with ||Z) —|Z)| < eand Z = XB~1/2.

3: (Projection in slow feature space) Use theorem 28 project |Z) onto the slow eigenspace
of A using threshold 6 and precision ¢ (i.e. A4<'076A§9757)

4: Perform amplitude amplification and estimation on the register |0) with the unitary U
implementing steps 1 to 3, to obtain |Y) with |[Y) — |Y) | < € and an estimator ||Y|
with multiplicative error 7.

We conclude this section by stating the main dimensionality reduction theorem of this
paper.
Theorem 43 (QSFA algorithm). Assume to have quantum access to X = Y, osuv] €

R™ 4 and its derivative matriz X € R™1°8"%d  Let ¢ 0,6, > 0. There exists a quantum
algorithm that produces as output a state |Y) with | |Y) |A<9 sA<052) | < € in time

d ((%(X) + R(X)) (u(X) + M(X))7K1>

00

and an estimator ||Y|| with ||[Y|| = Y]] | < n||Y|| with an additional 1/7 factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed
in time O(x(X)u(X)log(1/€)) and provide the state |Z) using Corollary 42. It is simple
to verify that creating a state |Z) of whitened data such that Z7Z = I can be done
using quantum access just to the matrix X, as Z = XB~Y2. The second step is the
projection of whitened data in the slow feature space, which is spanned by the eigenvectors
of A = ZTZ. This matrix shares the same right eigenvectors of X B~/2, which is simple
to check that we can efficiently access using the QRAM constructions of X and X. Using
the algorithm for quantum linear algebra, i.e. theorem 29, we know that the projection
(without the amplitude amplification) takes time equal to the ratio (X ) + u(X) over the

x)+u(x))

threshold parameter, in other words it takes time O( Finally, the amplitude

amplification and estimation depends on the size of the projection of |Z) onto the slow
7]
A<o,n
roughly the same if we look at Z instead of Z. Note also that Z is the whitened data,
which means that each whitened vector should look roughly the same on each direction.
This implies that the ratio should be proportional to the ratio of the dimension of the
whitened data over the dimension of the output signal. The final runtime of the algorithm
is:

eigenspace of A, more precisely it corresponds to the factor O( ‘ | H , which is
<6,k

(£(X) + (X)) (1(X) + n(X))

0 (fa(X)u(X)log(l/s) T ) ) 121

J’_
420542057
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Note that the last ratio in this runtime was defined as yx_1 in definition 39. From this,
the runtime in the statement of the theorem follows.
O

We will see in the following sections that in the case of the MNIST dataset the projec-
tion ratio v is small enough.

There are cases where we want to use the quantum computer to estimate the model
fitted by SFA. For this, we would like the quantum computer to create a quantum state pro-
portional to the slow feature vectors, and then retrieve them using quantum tomography.
Assuming to use a tomography with /5 guarantees, we have the following corollary:

Corollary 44 (Fitting SFA model). Assume to have quantum access to dataset X € R7xd
and its derivative matriz X € R™1°87%d qnd let € > 0. There exists a quantum algorithm
that estimates the SFA model {w;}1, such that |w; —w;| < e with high probability, in
time:

€2

Proof. Recall that the model of slow feature analysis is obtained as the eigenvectors asso-
ciated to the smallest eigenvalues of the symmetric matrix A = B~/2XTXB~1/2, The
matrix of eigenvectors is applied on the whitened data after the conditions of zero mean
and unit variance have been satisfied. Thus, in order to extract the SFA model, we rely
on lemma 33, that is, first we extract the eigenvectors of A associated to its smallest
eigenvalues, and then we multiply these resulting vectors by B~1/2 for the whitening part.
More precisely, a vector in the slow-feature space is defined as y; = M z;, where M is the
(K — 1 x d) matrix of eigenvectors of the whitened derivative covariance matrix A, and z;
is the whitened vector B~/2z;. The model is thus obtained by the matrix of eigenvectors
M e RE=Dxd right multiplied by B~1/2. Further observe that the matrices X, X, B, A
share the same row space.

We start by using quantum access to X and quantum linear algebra to create a state
proportional to the uniform superposition of its left and right singular vectors, analogously
to the first whitening step of QSFA. More formally, we use quantum linear algebra to
multiply the second register by X, and perform this mapping:

d
1
X el 16) |23} = oi(X) o) ) > —= 3 Jos) )
HXHF; HXII Z >

Then, we perform singular value estimation with error €¢; on the product of two ma-
trices XB~/2, which can be done either using our singular value estimation of product
of matrices, i.e. lemma 22, or [38, lemma 27], which does not depend on the condition
number of the matrices, and thus is faster. As noted before in this thesis, these singular
values of this matrix are the square root of the singular values of the whitened derivative
matrix A, and here we denote them o;(v/A). Thus, we obtain the following state:

d
% D fui) o) los(VA))

We project the previous state on the subspace spanned by the singular vectors that
correspond to singular values smaller than a certain threshold 6, (which can be found
by binary search), such that |{o;]o; < 0}| =& K — 1. Using amplitude amplification this

. . . SRT . 1
operation can be performed occurring in a multiplicative cost of JK Let €; be the
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precision in singular value estimation, then the total runtime is of

O((sX(x) + | L E D,

The resulting state is

K-1
s 3 ) (V) (4.4

The runtime of this procedure is:

0 <K<X>M<X>1og<1/emm> 4 R +TU><1og<1/A>> (4.5)

The addend on the left is the runtime of the matrix multiplication step, needed to create
the uniform superposition of singular vectors, and the second addend comes from the
singular value estimation procedure of [38, lemma 27]. Here a is the number of ancilla
qubit used to obtain the block encoding of the matrix, A is the failure probability, and Ty
is the time needed to implement the block encoding of the matrix X X, which consist in
using sequentially the quantum access to the two matrices. Using quantum access to the
matrices, we consider Ty to be polylogarithmic.

To conclude the algorithm, we recall that thanks to lemma 33, we can multiply the
central register by B~/2, thus obtaining a state which stores the representation of the
model w;X.

K—1
T 2 ) (V)

As we know from quantum linear algebra, i.e. theorem 28 the runtime for obtaining the
previous state is £(X)(u(X) + Ty) where T}, is the runtime needed to produce the state in
Equation 4.4, so this runtimes introduces a dependence of £(X) in the runtime in equation
4.5. To retrieve the model, we can now sample the singular values o; from the last register,
and obtain one of the K vectors of the model w; with uniform probability. Each of these
vectors can be used in a £ tomography, with precision €. Note that each of the samples of
the third register will give a valid state to perform tomography on, so we do not incur any
polynomial overhead in this sampling. Note the initial step of the algorithm for obtaining
the uniform superposition of the left and right singular vectors is negligible compared to
the rest of the algorithm. We pick €; small enough to be able to distinguish the smallest
singular values of X B~1/2  i.e. we pick ¢; < 1/2k(A), thus introducing dependence in the
runtime of k(X X).

The cost of the f5 tomography, which we repeat on the K states that represent the
vectors of the model introduce a dependence of O (K 6%T), where T is the computational
cost of producing the state.

@ <Ki <H2(X)M(X) log(1/€muit) + \/EK(X)F«'(XX)(M(X) + (X)) log(l/A)>>

The final runtime of this algorithm is thus the one in the statement of the theorem.
O
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4.4 Quantum Frobenius Distance Classifier

In this Section we define the quantum Frobenius Distance (QFD) classification, a novel
quantum method that classifies a new data point based on the average square f3-distance
between the new data point and each labeled cluster, i.e. the average of the square distances
between the new data point and each point in the cluster. The running time is logarithmic
in the number and dimension of the data points and proceeds by creating a weighted
superposition of all points in a cluster and the new data point, and then estimating the
distance of each point with the new data point in superposition, hence allowing to estimate
the average square distance. Quantum Frobenius Distance Classifier has running time that
is logarithmic in the dimension and number of data points. It assumes quantum access to
the dataset, or that the data comes directly from some quantum process. The classification
algorithm assigns a test point z(0) to the cluster k whose points have minimum normalized
average squared ¢y distance to z(0).

Let X be defined as the matrix whose rows are the vectors corresponding to the k-th
cluster, and |T}| is the number of elements in the cluster. For the test point x(0), define
the matrix X (0) € RI7k[*? which just repeats the row 2(0) |T}| times. Then, we define

1X — X(0)]|%
(IXell 5+ 1X(0)[3)

Fi(2(0)) = 2

which corresponds to the average normalized squared distance between 2:(0) and the cluster
k. Let h: X — [K] our classification function. We assign to z(0) a label according to the
following rule:

h(x(0)) := arg Jnin, Fr(2(0)) (4.6)

We will estimate Fj(z(0)) efficiently using the algorithm below. Using quantum access
to the data points we can create a superposition of all vectors in the cluster as quantum
states, have access to their norms and to the total number of points, and norm of the
cluster. We define a normalizing factor Ny, = HX;foF + ||X(0)H% = HXkH; + | Tk lz(0)])°.
First we explain how to compute a single Frobenius Distance Fy,(x(0)) in Algorithm 3, and
then the classification procedure follows trivially, and is described in Algorithm 4.

For the analysis, just note that the probability of measuring [1) in Equation 4.7 is:

o <|Tk| le @I + 3 Il ~2 3 <w<0>’x<i>>> = )

i€T), i€ETy,

By Hoeffding bounds, to estimate Fj(x(0)) with error 7 we would need O(n%) samples.
For the running time, we assume all unitaries are efficient either because the quantum
states can be prepared directly by some quantum procedure or given that the classical
vectors are stored in the QRAM as described in Appendix 8, hence the algorithm runs in
time O(n—lz) We can of course use amplitude estimation and save a factor of . Depending
on the application one may prefer to keep the quantum part of the classifier as simple as
possible or optimize the running time by performing amplitude estimation.

Given this estimator we can now define the QFD classifier.
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QFDC 4 Quantum Frobenius Distance classifier

Require:
Quantum access to K matrices X}, of elements of different classes. A test vector x(0).
Error parameter n > 0.

Ensure:
A label for z(0).

1: for k € [K] do

2: Use the QFE algorithm to compute F(z(0)) on X and x(0) with precision 7.
3: end for

4: Output h(z(0)) = arg minge[x] Fr(2(0)).

The running time of the classifier can be made ON(%) when using amplitude amplifica-
tion. We will see that in fact n does not have to be very small in order to classify correctly
the dataset where the clusters are nicely separated (as we will see from the experiments).
Specifically, we will see that for the MNIST dataset, after the dimensionality reduction we
can take n = 1/10, since the clusters are pretty well separated.

4.5 Experiments

The MNIST dataset, is a commonly used benchmark to test the validity of newly proposed
classifiers. Classical classification techniques can achieve around 98-99% accuracy, with
neural network solutions exceeding 99% (the MNIST dataset is quite simple and this is
why it is often used as a first benchmark). As previously introduced in the main text,
classical SFA has also been applied on the same dataset with accuracy 98.5%, with initial
PCA of dimension 35 and polynomial expansion of degree 3, and we will closely follow that
classification procedure. Our goal is to study a quantum classifier with two properties:
very good accuracy and efficiency. We detail our quantum classifier by going through the
three parts in any classical classifier: preprocessing, training, and testing. The error in the
whitening procedure has been simulated by adding noise from a truncated Gaussian distri-
bution centered on each singular value with unit variance. For the error in the projection
part, this comes only from potentially projecting on a different space than the one wanted.
By taking the right 6 (around 0.3 or 0.05 depending on the polynomial expansion) and a
small enough § (around 1/20) for the error, we guarantee in practice that the projection is
indeed on the smallest K — 1 eigenvectors.

Data preprocessing. The MNIST dataset is composed of n = 60000 images in the training
set and 10000 images in the test set, where each sample is a black and white image of a
handwritten digit of 28 x 28 pixels. The methodology is as follows: first, the dimension
of the images is reduced with a PCA to something like 35 (or around 90, depending on
the polynomial expansion degree we use in the following step). Fortunately, efficient incre-
mental algorithms for PCA exist, where it is not required to fully diagonalize a covariance
matrix, and the running time depends on the number of dimensions required as output.
Second, a polynomial expansion of degree 2 or 3 is applied, hence making the dimension
up to 10*. Third, the data is normalized so as to satisfy the SFA requirements of zero
mean and unit variance. Overall, the preprocessing stage creates around n = 10° vectors
x(i),i € [n] of size roughly d = 10* and the running time of the preprocessing is of the
order of O(nal)7 with nd ~ 10°. With a real quantum computer we would add a further
step, which is to load the preprocessed data in the QRAM. This take only one pass over
the data, and creates a data structure (i.e. a circuit) which is linear in the size of the data.
Hence, the overall preprocessing takes time of O(nd)
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Figure 4.1: Sensitivity analysis of the parameter p for the matrices X and X while in-
creasing n. The graph show the value of the Frobenius norm and the max ¢;-norm as two
options for pu. The two upper dotted lines represent the Frobenius norm of X and X for
polynomial expansion of degree 2. The thick horizontal lines above 10 shows the trend of
the Frobenius norm for the polynomial expansion of degree 3. For the MNIST dataset,
we see that both the Frobenius norm and the maximum #; norm are practically constant
when we increase the number of data points in the training set.

Training. The classical SFA procedure outputs a small number (K — 1) of “slow” eigenvec-
tors of the derivative covariance matrix, where K is the number of different classes, and
here K = 10. This is in fact the bottleneck for classical algorithms and this is why the
dimension was kept below d = 10* with polynomial expansion, which still requires inten-
sive HPC calculations. Generically, the running time is between quadratic and cubic, and
hence of the order 10'3. Once these eigenvectors are found, each data point is projected
onto this subspace to provide n vectors of (K — 1) dimensions which are stored in memory.
As the points are labelled, we can find the centroid of each cluster. Note that at the end,
the quantum procedure does not output a classical description of the eigenvectors, neither
does it compute all vectors y(i), as the classical counterpart could do. Nevertheless, given
a quantum state |x(4)) it can produce the quantum state |y(¢)) with high probability and
accuracy.

Testing. For the testing stage, the classifier trained with the errors, is used to classify
the 10000 images in the test set. Classically, the testing works as following: one projects
the test data point z(0) onto the slow feature space, to get a (K — 1)-dimensional vector
y(0). Then, a classification algorithm is performed, for example kNN (i.e. one finds the k
closest neighbours of y(0) and assigns the label that appears the majority of times). The
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Figure 4.2: Sensitivity analysis of the parameter p for the matrices X and X while increas-
ing d. The graph show the value of the Frobenius norm and the max ¢;-norm (i.e. |-[|.)
as two options for u. When we increase the dimension of the data points by changing the
PCA dimension, before the polynomial expansion. In general, the maximum ¢; norms are
always upper bounded by the Frobenius norms. The dashed lines are for the polynomial
expansion of degree 2. The bottom thick lines represent the maximum #; norm for the
polynomial expansion of degree 3, and the dotted central line for the Frobenius norm of
the same polynomial expansion.

complexity of this step is O(Kd) for the projection of the test vector, plus the time of the
classification in the slow feature space. The kNN algorithm, for example, is linear in the
number of data points times the dimension of the points (O(nd)). In Nearest Centroid
algorithm (a supervised classification algorithm where the label of a new point is assigned
to the cluster with closest barycenter), if in the training stage we have found the centroids,
then classification can be done in time O(Kd). In our final algorithm we perform the

training and testing together, i.e. using QSFA and QFD together.

Parameters of experiment. We now estimate a number of parameters appearing in the
running time of the quantum classifier.

Number and dimension of data points. For the MNIST we have that nd is of the order of
10° (including data points and derivative points).

The parameter ju for the matrices X and X. We analyze the parameter pu(z), u(X) as the
number of data points in the training set and the dimension of the input vectors increases
(PCA dimension + polynomial expansion). We know that u is bounded by the Frobenius
norm of the matrix. We also look at the case where u is defined as the maximum [; norm
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Figure 4.3: Sensitivity analysis of the condition number of X and X while increasing d, the
number of pixels, and discarding the 0 singular values. We plot the condition number of
a polynomial expansion of degree 2 (two dashed lines in the bottom) and degree 3 (upper
lines).

of the rows of the matrices, plotted in Figure 4.1. Matrices are normalized to have spectral
norm 1. The good choice of p is practically constant as we increase the number of points
in the dataset. All the /1 norms in the experiment were less than 11. We also plot the
Frobenius norm and the maximum /; norm as the dimension of the vectors in the dataset
increases. While the Frobenius norm somewhat increases with the dimension, the maxi-
mum [y norm remains stable. This could be expected since in the preprocessing a PCA is
done, making the input matrices in fact quite low rank. Indeed, after the polynomial ex-
pansion the Frobenius norm does not increase much since we only add higher order terms,
and note that all entries of the matrices are smaller than 1, since || X]|[,... <[ X[y <1. On
the other hand, the scaling and normalization of X helps keeping the /; norm even lower.
It is important to state here that one gains a factor 10% just by taking the correct quan-
tum algorithm for performing linear algebra and not an off-the-shelf one. Such decisions
will be crucial in reaching the real potential of quantum computing for machine learning
applications.
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Figure 4.4: Sensitivity analysis of the condition number of X and X while increasing the
size of the training set. We plot the condition number after discarding the 0 singular values.
The two central lines represent the condition number for a polynomial expansion of degree
3 while discarding the bottom 1% of the smallest singular values.

Condition number for the matriz X. Figure 4.3 and 4.4 tells us that condition number is
rather stable, in fact decreasing. As explained, we do not need to have the real condition
number in the running time but a threshold under which we ignore the smaller eigenvalues.
In fact, retaining just 99.5% of the singular values does not considerably penalize the ac-
curacy and achieves a behavior of growing much more slowly as we increase the dimension,
with a value around 102.

Error parameters. There are four error parameters, € for the matrix multiplication pro-
cedure, 6 and 6 for the projection procedure, and 7 for the estimate of the norms in the
classification. For e, it appears only within a logarithm in the running time, so we can
take it to be rather small. For the projection, we took ¢ ~ 1/20 and from the simulations
we have that 6 =~ 0.3 for polynomial expansion of degree 2 and 6 ~ 0.05 for polynomial
expansion of degree 3. Last, it is enough to take n = 1/10. Note also, that these parame-
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Table 4.1: Accuracy of relevant experiments for various combination of classifiers and
polynomial expansion. Here we have chosen ¢/k(X) = 1077,§ = 0.054,7 = 1/10 and
10.000 derivatives per class.

QSFA,
d(PCA) | XX e@l, ROL _~AX) #X) mX) mX) 0 % %
860 (40) 22 102 0.9 1.4 41 22 32 15 0.38 96.4 96.4
3220 (80) 41 197 2.7 3.8 119 61 65 30 0.32 973 974
4185 (90) 46 215 3.1 4.4 143 74 72 35 0.31 97.4 97.4
QSFA,

d(PCA) | X[ X200, FOL__+X X mX) mX) 0 % %
5455 (30) 73 81 5.9 4.3 276 278 149 149 0.06 98.2 98.3
8435 (35) 96 102 7.8 5.7 369 389 146 156 0.05 97.5 984
9138 (36) 101 108 8.0 5.3 388 412 149 159 0.04 97.7 98.5

ters are pretty stable when increasing the dimension, as they only depend on whether we
perform a polynomial expansion of 2 or 3.

Projection ratio. The ratio between the norm of the vectors in the whitened space over the
projected vector in the slow feature space is well bounded. For an initial PCA dimension
of 40 and polynomial expansion of degree 2, this ratio is 10 with variance 0.0022, while for
a polynomial expansion of degree 3 and a PCA dimension of 30 is 20 with 0.0007 variance.

Table 4.1 provides the exact values of all parameters in the experiment.

4.6 Detection of DGA domains with QSFA

In this section we describe how a quantum machine learning algorithm can be used to
increase the accuracy of a classifier for anomaly detection, in a machine learning problem
which appears in cybersecurity.

The totality of the malware that exists nowadays is shipped with a DGA (Domain
Generating Algorithm: an algorithm that generates random domain names). The reason
for these algorithms to exists is connected to the way an infected machine communicates
with its Command & Control server (C&C). A C&C is a machine to which all infected
computers connect to, and sends commands to be executed on the infected machines. If
a malware is shipped with a predefined list of IP addresses or domains name to contact,
this information can be easily extracted by reverse engineering the malware, and thus
blocked promptly at internet-wide level by the Internet Service Providers. Therefore, the
DNS name of the C&C server needs to be hidden inside the malware with great care by
the authors of the malware. One possible strategy is to use a randomized algorithm that
generates a list of possible candidates DNS names based on a pre-shared seed of randomness
between the infected machines and the C&C server. Each day the C&C server will use
the DGA to create a new domain, and then it will register it, i.e. allowing a correct name
resolution from the DGA domain to the IP address of the C&C server. That day, the
infected machines, will query some randomly generated domain names, until they find the
domain registered by the C&C server. The choice of the domain leverages randomness
from the scurrent date and the pre-shared randomness. While most of the DNS queries
won’t be successful (the DNS server will issue a NXDomain response from the server), one
query will resolve to the machine owned by the attacker, thus allowing infected machines
to connect to the C&C. The malware can now receive new commands to execute on the
infected machines [11]. Being able to detect DGA domains by analyzing DNS traffic is
desirable for network administrators because the presence of a DGA domain name in the
DNS queries is a strong indicator of network compromise. The problem of discriminating
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between human generated domains and DGA has been vastly studied in literature using
machine learning. [45, 147].

We remark that in the following experiment we only assume that the information avail-
able to us is the domain name presented in the queries. More realistic models should
encompass more features, like information related on the timing of the requests, and his-
torical information on the sender of the query (like the IP address of computer issuing the
query), similarity between queries received by the DNS server in a certain amount of time,
and so on. As done in literature, we limit our analysis in favour of a simpler model, as our
aim is just to show how to use QSFA to improve the performances of a classifier in anomaly
detection. We believe that the using more features, this will lead to further improvements
in the performances of an anomaly detection system.

4.6.1 The experiment

A common way to work with DGA names for machine learning analysis comes from the
Natural Language Processing domain. In NLP is common to map strings of text in a vector
space, in a way that distances between vectors can be used as a proxy for similarity between
strings. A technique used to map text documents in a vector space is called vectorization: a
procedure that converts a collection of documents (or strings) to a matrix of token counts.
In our case, the documents are represented by domain names, and the tokens counts are
the presence of the n-grams in a domain. An n-gram is just a sequence of n characters
from the domain name. Therefore, each document is mapped to a binary (sparse) vector v,
whose v; component is 1 if the domain contain the i-th n-gram. The length of the vector is
given by the number of the n-grams extracted from the domain names in the training set.
To create the list of n-grams, we use a list of valid (i.e. human generated) domain names.
Once we have the list of n-grams in the dataset, we are ready to create our feature matrix,
used in QSFA algorithm. To create the input matrices for QSFA we put together a list
of human generated domain names, along with a list of DGA domains. Then, we perform
vectorization on all these domains, using the n-grams extracted from the dataset of human
generated domains. This represents the matrix X in the SFA algorithm. The supervised
information consists in knowing if a domain is a DGA or not. From X, we take pairwise
differences of domains that belong to the same class, and we form the matrix X. Using
classical SFA we extract a single slow-feature vector (remember that the number of slow
feature vectors is K —1 where K is the number of classes, which is 2 for binary classification).

This approach represents a novel way of performing anomaly detection using a token
matrix, that previously was not possible using classical computers. As the size of this ma-
trix can considerably exceed the size that allows us to perform linear algebraic operations
(i.e. algorithms whose runtime is polynomial in the size of the matrix), we are restricted to
performing only operations that are linear in the number of columns and rows. The usual
way to use the token matrix in this case, is to compute, for each domain, a score value.
This score consists simply in the logarithm of the count of 1 entries in the vectorized do-
main. For example, if a domain contains k n-grams that have been extracted from the list
of human generated domains, its score is log(k). Ideally, DGA domains should not have a
high score, while all the n-grams in a human generated domain will result in a “1” entry in
its vectorized form. This score, is then used in other ML algorithms as an additional feature.

In this experiment, the training set used to generate the matrix of tokens counts consist
in the famous Alexa list of top 1 million web sites. The list of DGA domains has been
obtained from [3], which has a repository of the source code of the domain generation
algorithms used in real implementation of famous malware. From the Alexa list, we ex-
tracted all the n-grams for n € {3,4,5}. Thus, for a dataset of n domains, this tokenization
produces a matrix M € {0,1}"*¢ where d is the number of distinct n-grams present in
the training set. As the original dataset could not fit the constraint of the hardware (
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an HPC architecture consisting in 384 cores and 7 Tb of memory ), in order to make the
problem tractable we reduced the dataset by picking domains containing only the top 15
most frequent letters in the list of benign domains. In this way, we were able to reduce
the tokenization matrix to have size n = 60000 and d = 30000, where n is the number of
selected domains and d the number of n-grams.

Using the feature extracted using the slow feature vector, along with entropy and length,
we were able to improve the accuracy of 3 different classifiers, obtaining the following
results:

e Logistic Regression classifier from 89% to 90.5% (+1.5%)
e Naive Bayes classifier from 89.3% to 92.3% (+3%)
e Decision Trees classifier from 91.4% to 94.0% (+2.6%)

In conclusion, this is an example of how quantum computation is not only capable of
solving faster (or better) previous problem already tackled by classical computer, but is also
capable of unlocking new ways of processing data that previously were unavailable (such
as performing linear algebraic operations on the token matrix). This experiment highlights
the importance of quantum computers in machine learning. Using a fault tolerant quantum
computer, along with quantum access to the data, it is possible to extract the slow feature
vectors of models whose dimension is currently not tractable with classical computers. In
fact, just to run this experiment on a dataset of reduced dimensionality (i.e. taking only
domain names containing the top 15 most frequent letters in the dataset) we used more
than 2 hours of HPC calculations. I expect that quantum computer will be able, not only
to speed up machine learning task that we are already able to solve, but also offer new and
better ways of solving problems that we now solve in a sub-optimal way.

4.7 Conclusions

In this chapter we analyzed some applications of quantum linear algebra to propose the
quantum version of a fundamental algorithm for dimensionality reduction in supervised ma-
chine learning and statistics. We carefully analyzed its performance on standard datasets
and proposed a non-trivial application of the SFA model in a context where linear algebra
based algorithms are too computationally expensive to be applied.
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QFDE 3 Quantum Frobenius Distance Estimator

Require:

Quantum access to the matrix Xy, of cluster k and to a test vector z(0). Error parameter
n > 0.

Ensure:

An estimate Fy(z(0)) such that |Fy(z(0)) — Fx(z(0))| < 7.

1: s:=0
2: for r = O(1/n%) do

3: Create the state
(\/|Tk I2(0)110) + | Xkl 1) ) 0} 0)
4: Apply the unitary that maps:
10)[0) = 10) ﬁZ| and  [1)[0) = [1) IXH > il i)
| k 1€Ty F 1€Ty
to the first two registers to get
(\o S 12() i) + 1) 3 =@l 13) ) 10)
1€TYy, 1€TY,
5: Apply the unitary that maps
10) 1) 10) = 10) |2} [2(0)) and [1)[é) [0) = |1) [4) |ai)
to get the state
(|o > 1)) 2 2(0)) + 1) > (@l i) 2(2)) ) (4.7)
€Ty €Tk
6: Apply a Hadamard to the first register to get
o 10} 3= () 3) la(0)) + () 1) (i) ) +
2Nk €Ty,
1
—1 z(0)] |2) |2(0)) — ||lz(@)|| |¢) |z (e 4.8
mwﬁ;ﬂ(nunwu» le@I 1) |2() ) (48)
7: Measure the first register and if the outcome is |1) then s:=s+1
8: end for

9: Output 2.




Chapter 5

Q-means

In this section we detail a quantum algorithm for unsupervised learning, which can be seen
as the quantum version of the well known k-means algorithm. This algorithm is one of the
simplest, yet most commonly used clustering algorithms. We first introduce the classical
algorithm, then propose a definition of the k-mean model that makes is robust to error in
the model. Then, we explain how to derive a quantum version of the k-means algorithm
and show its performance on experimental data.

5.1 The k-means algorithm

The k-means algorithm was introduced in [102], and is extensively used for unsupervised
problems. The inputs to k-means algorithm are vectors x; € R? for i € [n]. These points
must be partitioned in k subsets according to a similarity measure, which in k-means is
the Euclidean distance between points. The output of the k-means algorithm is a list of
k cluster centers, which are called centroids. The algorithm starts by selecting k initial
centroids randomly or using efficient heuristics like the k-means++ [14]. It then alternates
between two steps: (i) Each data point is assigned the label of the closest centroid. (ii)
Each centroid is updated to be the average of the data points assigned to the corresponding
cluster. These two steps are repeated until convergence, that is, until the change in the
centroids during one iteration is sufficiently small.

More precisely, we are given a dataset X of vectors z; € R? for i € [n]. At step t,
we denote the k clusters by the sets C; for j € [k], and each corresponding centroid by
the vector 03 At each iteration, the data points x; are assigned to a cluster Cjt» such that
CiuCsy---UC, =V and C;NCf = 0 for i # 1. Let d(x;,c}) be the Euclidean distance
between vectors x; and cz-. The first step of the algorithm assigns each z; a label £(x;)?
corresponding to the closest centroid, that is

O(z)t = argmin ey (d(4, 4)).
The centroids are then updated, c§»+1 = @ Eie(); x;, so that the new centroid is the

average of all points that have been assigned to the cluster in this iteration. We say that
we have converged if for a small threshold 7 (which might be data dependent) we have:

el

k
Z d(cf, c;_l) <7
j=1

The loss function that this algorithm aims to minimize is the RSS (residual sums of
squares), the sum of the squared distances between points and the centroid of their cluster.

RSS := Z Z d(cj,x;)?

JE[k] i€C;

65
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As the RSS decrease at each iteration of the k-means algorithm, the algorithm therefore
converges to a local minimum for the RSS. The number of iterations T for convergence
depends on the data and the number of clusters. A single iteration has complexity of
O(knd) since the n vectors of dimension d have to be compared to each of the k centroids.
The centroids obtained at time ¢ are stored in the matrix C* € R¥*? such that the ;'
row ¢ for j € [k] represents the centroid of the cluster Cf.

From a computational complexity point of view, we recall that it is NP-hard to find
a clustering that achieves the global minimum for the RSS. There are classical clustering
algorithms based on optimizing different loss functions, however the k-means algorithm uses
the RSS as the objective function. The algorithm can be super-polynomial in the worst
case (the number of iterations is 2°(V™ [13]), but the number of iterations is usually small
in practice. The k-means algorithm with a suitable heuristic like k-means++ ( described
later on ) to initialize the centroids finds a clustering such that the value for the RSS
objective function is within a multiplicative O(logn) factor of the minimum value [14].

5.1.1 J¢—k—means

We now consider a §-robust version of the k-means in which we introduce some noise. The
noise affects the algorithms in both of the steps of k-means: label assignment and centroid
estimation.

o Let c; be the closest centroid to the data point x;. Then, the set of possible labels
Ls(x;) for x; is defined as follows:

Ls(w;) = {cp : |d*(c}, ) — d*(cp, i) < 0 }

The assignment rule selects arbitrarily a cluster label from the set Ls(x;).

e We add ¢/2 noise during the calculation of the centroid. Let CiT! be the set of points
which have been labeled by j in the previous step. For d-k-means we pick a centroid

c?'l with the property that:

1 4]
t+1
C. - xill < =.
e 2 o<

T; €C;+1

One way to see this is to perturb the centroid with some noise.

Let us add two remarks on the §-k-means. First, for a dataset that is expected to have
clusterable data, and for a small §, the number of vectors on the boundary that risk to be
misclassified in each step, that is the vectors for which |Ls(z;)| > 1 is typically much smaller
compared to the vectors that are close to a unique centroid. Second, we also increase by
0/2 the convergence threshold from the k-means algorithm. All in all, 6-k-means is able
to find a clustering that is robust when the data points and the centroids are perturbed
with some noise of magnitude O(4). As we will see in this work, ¢g-means is the quantum
equivalent of §-k-means.

5.2 The g-means algorithm

The g-means algorithm is given as Algorithm 5. At a high level, it follows the same steps
as the classical k-means algorithm (and the EM algorithm for GMM), where we now use
quantum subroutines for distance estimation, finding the minimum value among a set of
elements, matrix multiplication for obtaining the new centroids as quantum states, and
efficient tomography. First, we pick some random initial points, using the quantum version
of a classical techniques (like the k-means++ idea [14], for which we give a quantum
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algorithm later ). Then, in Steps 1 and 2 all data points are assigned to a cluster. In Steps
3 and 4 we update the centroids of the clusters and retrieve the information classically.
The process is repeated until convergence.

5.2.1 Step 1: Centroid distance estimation

The first step of the algorithm estimates the square distance between data points and
clusters using a quantum procedure.

Theorem 45 (Centroid Distance estimation). Let a data matriz V € R™™? and a centroid
matriz C € RF*4 be stored in QRAM, such that the following unitaries |i) |0) — i) |2;),
and [7)10) — |j)|c;) can be performed in time O(log(Nd)) and the norms of the vectors
are known. For any A > 0 and €; > 0, there exists a quantum algorithm that performs the

mapping
% D 1) @jepw (14)10)) = % > i) @jem (19) (i, ¢5))),
i=1 i=1

where |d?(x;, ¢;) —d*(xi, ¢j)| < €1 with probability at least 1—2A, in time 0] (k% log(l/A))
where n = max; (||z;]|%).

The proof of the theorem follows rather straightforwardly from lemma 30. In fact one
just needs to apply the distance estimation procedure k times. Note also that the norms
of the centroids are always smaller than the maximum norm of a data point which gives
us the factor 7.

5.2.2 Step 2: Cluster assignment

At the end of Step 1, we have coherently estimated the square distance between each point
in the dataset and the k centroids in separate registers. We can now select the index
j that corresponds to the centroid closest to the given data point, written as ¢(z;) =
argmin; ¢ (d(s, ¢;)). As taking the square of a number is a monotone function, we do not
need to compute the square root of the distance in order to find ¢(x;).

Lemma 46 (Circuit for finding the minimum). Given k different log p-bit registers ® ;e la;),
there is a quantum circuit Upin that maps (®jepp) la;)) |0) — (®jem |as)) |argmin(ay)) in
time O(klogp).

Proof. We append an additional register for the result that is initialized to |1). We then
repeat the following operation for 2 < j < k, we compare registers 1 and 7, if the value in
register j is smaller we swap registers 1 and 5 and update the result register to j. The cost
of the procedure is O(klog p). O

The cost of finding the minimum is O(k) in step 2 of the g-means algorithm, while we also
need to uncompute the distances by repeating Step 1. Once we apply the minimum finding
lemma 46 and undo the computation we obtain the state

t ,7L 3 aes
w>.—ﬁ;|>w<z>>. (5.3)

5.2.3 Step 3: Centroid state creation

The previous step gave us the state [¢!) = LN Sy i) [€4(z;)). The first register of this

state stores the index of the data points while the second register stores the label for the
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Algorithm 5 ¢-means.

Require: Data matrix X € R™"*? stored in QRAM data structure. Precision parame-

ters 0 for k-means, error parameters €; for distance estimation, €5 and €3 for matrix
multiplication and e4 for tomography.

Ensure: Outputs vectors ¢y, ca, -+ ,cx € R? that correspond to the centroids at the final

10:

11:

12:

: 3.1 Measure the label register to obtain a state |x}) = —== >",cc¢ i), with prob. —&
J

step of the J-k-means algorithm.

Select k initial centroids cJ, - - - ,cg and store them in QRAM data structure.

: t=0
: repeat

Step 1: Centroid Distance Estimation

: Perform the mapping (theorem 45)

= 20 @ie 1 0) > <= Yo ey )P d) ()

where [d2(z;, c}) — d*(wi, cb)| < €.

Step 2: Cluster Assignment

: Find the minimum distance among {d?(x;, C?’)}je[k] (lemma 46), then uncompute Step

1 to create the superposition of all points and their labels

1 <& S 1 <
—= > i) ®jep 1) [d? (i, b)) = —= > i) 1€ (24)) (5.2)
ﬁ; 1 Hﬁ;

Step 3: Centroid states creation

t
1 |C_7‘ ‘

V1T

: 8.2 Perform matrix multiplication with matrix V7 and vector |x") to obtain the state

|c§-+1> with error e, along with an estimation of Hc;-+1 || with relative error €3 (theorem

2).

Step 4: Centroid Update
t+1

4.1 Perform tomography for the states |cj ) with precision €4 using the operation
from Steps 1-3 (theorem 11) and get a classical estimate E;H for the new centroids
such that [¢f™! — ¢t <\ /M(es + €4) = €centroids

4.2 Update the QRAM data structure for the centroids with the new vectors
56+1 B .Ezﬂ_

t=t+1

until convergence condition is satisfied.
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data point in the current iteration. Given these states, we need to find the new centroids
|ct+1> which are the average of the data points having the same label.

Let x5 € RY be the characteristic vector for cluster j € [k] at iteration ¢ scaled to unit
£1 norm, that is (X;) ICt if i € C; and 0 if 4 € C;. The creation of the quantum states

corresponding to the centroids is based on the following simple claim.

Claim 47. Let X;‘ € RY be the scaled characteristic vector for C; at iteration t and X €
R"™*4 be the data matriz, then cﬁ-“ = X"}

Proof. The k-means update rule for the centroids is given by ct+1 |C‘\ 2760 x;. As the

columns of X7 are the vectors z;, this can be rewritten as ctH X7yt X O

The above claim allows us to compute the updated centroids cﬁ“

algebra operations. In fact, the state |1)%) can be written as a weighted superposition of
the characteristic vectors of the clusters.

€l v JIG
=\ WZ' =3 5 )

Jj=1 i€Cy

using quantum linear

By measuring the last register, we can sample from the states [x}) for j € [k], with
probability proportional to the size of the cluster. We assume here that all k clusters are
non-vanishing, in other words they have size Q(N/k). Given the ability to create the states
| X§> and given that the matrix V is stored in QRAM, we can now perform quantum matrix
multiplication by X7 to recover an approximation of the state | X7y} = \c“'l) with error
€2, as stated in theorem 28. Note that the error e; only appears inside a logarithm. The
same theorem allows us to get an estimate of the norm HX Tx§ || = Hc;+1 || with relative error
e3. For this, we also need an estimate of the size of each cluster, namely the norms ||x;||-
We already have this, since the measurements of the last register give us this estimate, and
since the number of measurements made is large compared to k (they depend on d), the
error from this source is negligible compared to other errors.

The running time of this step is derived from theorem 28 where the time to prepare
the state |X§> is the time of Steps 1 and 2. Note that we do not have to add an extra
k factor due to the sampling, since we can run the matrix multiplication procedures in
parallel for all j so that every time we measure a random | X§> we perform one more step of
the corresponding matrix multiplication. Assuming that all clusters have size Q(N/k) we
will have an extra factor of O(logk) in the running time by a standard coupon collector

2
argument. We set the error on the matrix multiplication to be €2 < #‘;d as we need to
call the unitary that builds ctJrl for O(dlogd) times. We will see that this does not increase

the runtime of the algorlthm as the dependence of the runtime for matrix multiplication
is logarithmic in the error.

5.2.4 Step 4: Centroid update

In Step 4, we need to go from quantum states corresponding to the centroids, to a classical

description of the centroids in order to perform the update step. For this, we will apply the

{5 vector state tomography algorithm, i.e theorem 11, on the states \ct+1> that we create in

Step 3. Note that for each 5 € [k] we will need to mvoke the unitary that creates the states

|c§+1> a total of O(dlgigd) times for achieving |||c;) — |¢;)|| < es. Hence, for performing

k(log k)d(log d) )
€

the tomography of all clusters, we will invoke the unitary O( times where the

O(klog k) term is the time to get a copy of each centroid state.
The vector state tomography gives us a classical estimate of the unit norm centroids
within error ey, that is |||¢;) — |¢;)|| < es. Using the approximation of the norms ||¢;|| with
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relative error €3 from Step 3, we can combine these estimates to recover the centroids as
vectors. The analysis is described in the following claim:

Claim 48. Let €4 be the error we commit in estimating |c;) such that |||c;) — &) < ea,
and e the error we commit in the estimating the norms, |||c;|| — |l¢;ll| < es|le;ll. Then

||a - Cj” S \/’7](63 + 64) = €centroid-

Proof. We can rewrite ||c; — ¢;|| as HHCJH lc;) — el |§>H It follows from triangle inequal-
ity that:

We have the upper bound ||¢;|| < /7. Using the bounds for the error we have from
tomography and norm estimation, we can upper bound the first term by /€3 and the
second term by ,/mes. The claim follows. O

Teil 1) = llel )| < |

llesll fez) = llesll IC7>H + lleslies) = Nesll el

Tomography on approximately pure states

Let us make a remark about the ability to use theorem 11 to perform tomography in our
case. The updated centroids will be recovered in Step 4 using the vector state tomography
algorithm in theorem 11 on the composition of the unitary that prepares |1!) and the
unitary that multiplies the first register of [¢f) by the matrix V7. The input of the
tomography algorithm requires a unitary U such that U |0) = |z) for a fixed quantum state
|x). However, the labels ¢(x;) are not deterministic due to errors in distance estimation,
hence the composed unitary U as defined above therefore does not produce a fixed pure
state |z). Nevertheless, two different runs of the same unitary returns a quantum state
which we can think of a mixed state that is a good approximation of a pure state.

We therefore need a procedure that finds labels £(x;) that are a deterministic function
of x; and the centroids ¢; for j € [k]. One solution is to change the update rule of the
d-k-means algorithm to the following: Let ((x;) = j if d(x;, ¢;) < d(z4,¢j) — 26 for j' # j
where we discard the points to which no label can be assigned. This assignment rule ensures
that if the second register is measured and found to be in state |j), then the first register
contains a uniform superposition of points from cluster j that are § far from the cluster
boundary (and possibly a few points that are ¢ close to the cluster boundary). Note that
this simulates exactly the J-k-means update rule while discarding some of the data points
close to the cluster boundary. The k-means centroids are robust under such perturbations,
so we expect this assignment rule to produce good results in practice.

A better solution is to use consistent phase estimation instead of the usual phase es-
timation for the distance estimation step , which can be found in [130, 8]. The distance
estimates are generated by the phase estimation algorithm applied to a certain unitary in
the amplitude estimation step. The usual phase estimation algorithm does not produce a
deterministic answer and instead for each eigenvalue A\ outputs with high probability one of
two possible estimates A such that |\ — A| < e. Instead, here as in some other applications
we need the consistent phase estimation algorithm that with high probability outputs a
deterministic estimate such that |\ — \| < e.

For what follows, we assume that indeed the state in Equation 5.3 is almost a pure
state, meaning that when we repeat the procedure we get the same state with very high
probability.

5.3 Initialization: ¢g-means+-+

Before running k-means, one usually chooses the first k centroids by using the k-means++
technique from [14]. A first centroid is chosen uniformly at random and we compute its
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distance to all points of the dataset. Then we sample one point with a weighted probability
distribution corresponding to their squared distance to the centroid. We repeat the previous
step with this new point as centroid, until & centroids have been chosen.

A quantum analogue, g-means++, can be implemented efficiently using the square
distance subroutine described for the g-means algorithm form theorem 45. Starting with
a random index ¢ we compute the following state in time O(%)

=
|4) 7 J;J 17) 1d(zs,x5))

Where z; is the initial centroid. We can then convert the distance register as amplitudes
using a controlled rotation after a simple arithmetic circuit.

. 1 nol . ) ) d(xi,xj)
) 7 3 b ez (% 10y + 510 )

Each distance has been normalized by 2n > max; ;(d(z;, z;)) to be a valid amplitude.
After undoing the distance computation subroutine in the second register, we perform an
amplitude amplification on |0). This creates the state

|
A

n

1

) = D d(i 2) 1)

Il
<

where Z is the normalization factor Z;’;Ol d?(x;, ;). We can sample a value j that will

represent the next centroid chosen for iteration ¢ = 0. To create the state |[++) we need to
perform amplitude amplification, and repeat O(1/4/P(0)) times the distance estimation

2
procedure, with P(0) being the probability of measuring |0). Since P(0) = 1 (E 51(1277;”))
1 2n 2n

= <
VPO L (S @) JE S )

In the end we repeat k — 1 times this circuit, for a total time of O(k%). In

order to be adapt this initialization subroutine with §-k-means algorithm, it suffice to pick
€1 < (5/2

5.4 Analysis

We provide the theorem of the running time and accuracy of the ¢g-means algorithm.

Theorem 49 (g-means). For a data matriz X € R™*? for which we have quantum ac-
cess, and parameter § > 0, the g-means algorithm with high probability outputs centroids
consistent with the classical §-k-means algorithm, in time

" 1.5
0 (ke )00 + KD+ 1 k)

per iteration.

We prove the theorem in Sections 5.4.1 and 5.4.2.
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5.4.1 Error analysis

In this section we determine the error parameters in the different steps of the quantum
algorithm so that the quantum algorithm behaves the same as the classical §-k-means.
More precisely, we will determine the values of the errors €1, €, €3, €4 in terms of §. In this
way, the cluster assignment of all data points made by the g-means algorithm is consistent
with a classical run of the J-k-means algorithm, and also that the centroids computed by
the g-means after each iteration are again consistent with centroids that can be returned
by the d-k-means algorithm.

The cluster assignment in g-means happens in two steps. The first step estimates the
square distances between all points and all centroids. The error in this procedure is of the
form

|d2(Cj,£UZ‘) — d2(Cj7.%‘i)| < €.

for a point z; and a centroid c;.

The second step finds the minimum of these distances without adding any error. For
the g-means to output a cluster assignment consistent with the J-k-means algorithm, we
require that:

N >

Vi€ k], | (cj,zi) — d*(eja)| <

which implies that no centroid with distance more than ¢ above the minimum distance can
be chosen by the ¢g-means algorithm as the label. Thus we need to take e; < §/2.

After the cluster assignment of the ¢g-means (which happens in superposition), we up-
date the clusters, by first performing a matrix multiplication to create the centroid states
and estimate their norms, and then a tomography to get a classical description of the
centroids. The error in this part iS €centroids, as defined in Claim 48, namely:

16 — ¢l < €centroia = v/N(€3 + €4).

Again, for ensuring that the g-means is consistent with the classical J-k-means algorithm
we take €3 < 4‘%, and €4 < ﬁ. Note also that we have ignored the error e5 that we can
easily deal with, since it only appears in a logarithmic factor in the runtime.

5.4.2 Runtime analysis

As the classical algorithm, the runtime of ¢g-means depends linearly on the number of
iterations, so here we analyze the cost of a single step. The cost of tomography for the k
centroid vectors is O(%) times the cost of preparation of a single centroid state |c}).
A single copy of \c§> is prepared applying the matrix multiplication by V7 procedure on
the state | X§> obtained using square distance estimation. The time required for preparing
a single copy of |c§) is O(k(V)(u(V) 4 Ty)log(1/e2)) by theorem 28 where Ty is the time

for preparing |X§> The time T}, is 9] (M) = 5(%’) by theorem 30. The cost

€1
of norm estimation for %k different centroids is independent of the tomography cost and is

6(%‘;)“(‘/)) Combining together all these costs and suppressing all the logarithmic
factors we have a total running time of:
o (rat My g2
S6(X) () + kL) + k2w (X)u(X) (5.4)
€1 €1 €3€1

The analysis in section 5.4.1 shows that we can take ey = 0/2, e3 = and ¢4 =

5 _§_

m Wok
Substituting these values in the above running time, it follows that the running time of the
g-means algorithm is:

%) (kd;z/s(V) (M(V) + kg) + kzn(;sn(V)u(V)) .
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This completes the proof of theorem 49.

A few concluding remarks regarding the running time of g-means. For dataset where the
number of points is much bigger compared to the other parameters, the running time for
the ¢-means algorithm is an improvement compared to the classical k-means algorithm. For
instance, for most problems in data analysis, k is eventually small (< 100). The number of
features d < n in most situations, and it can eventually be reduced by applying a quantum
dimensionality reduction algorithm first (which have running time polylogarithmic in d).
To sum up, g-means has the same output as the classical d-k-means algorithm (which
approximates k-means), it conserves the same number of iterations, but has a running
time only polylogarithmic in n, giving an exponential speedup with respect to the size of
the dataset.

5.5 Simulations on real data

In order to assess the capability of the quantum algorithm to provide accurate classification
results, we used some simulations. However, since neither quantum simulators nor quantum
computers large enough to test ¢g-means are available currently, we tested the equivalent
classical implementation of J-k-means. For implementing the J-k-means, we changed the
assignment step of the k-means algorithm to select a random centroid among those that
are 0-close to the closest centroid and added 6/2 error to the updated clusters.

We benchmarked our g-means algorithm the well-known MNIST dataset of handwritten
digits. To measure and compare the accuracy of our clustering algorithm, we ran the k-
means and the d-k-means algorithms for different values of § on a training dataset and
then we compared the accuracy of the classification on a test set, containing data points on
which the algorithms have not been trained, using a number of widely-used performance
measures.

The MNIST dataset is composed of 60.000 handwritten digits as images of 28x28 pixels
(784 dimensions). From this raw data we first performed some dimensionality reduction
processing, then we normalized the data such that the minimum norm is one. Note that,
if we were doing g-means with a quantum computer, we could use efficient quantum proce-
dures for dimensionality reduction, like the one described in Chapter 4, or other quantum
dimensionality reduction algorithms like [100, 43]. As we are testing an unsupervised learn-
ing algorithm, we discard the labels from the simulation. For preprocessing of the data,
we first performed a Principal Component Analysis (PCA), retaining data projected in a
subspace of dimension 40. After normalization, the value of  was 8.25 (maximum norm
of 2.87), and the condition number was 4.53. Figure 5.1 represents the evolution of the
accuracy during the k-means and J-k-means for 4 different values of 4. In this numerical
experiment, we can see that for values of the parameter 1/d of order 20, both k-means
and J-k-means reached a similar, yet low accuracy in the classification in the same number
of steps. It is important to notice that the MNIST dataset, without other preprocessing
than dimensionality reduction, is hard to cluster with high accuracy, due to the curse of
dimensionality.
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Accuracy (%)
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Figure 5.1: Accuracy evolution on the MNIST dataset under k-means and
6-k-means for 4 different values of §. Data has been preprocessed by a PCA to 40
dimensions. All versions converge in the same number of steps, with a drop in the
accuracy while § increases. The apparent difference in the number of steps until
convergence is just due to the stopping condition for k-means and J-k-means.

On top of the accuracy measure (ACC), we also evaluated the performance of ¢g-means
against many other metrics, reported in Table 5.2. More detailed information about these
metrics can be found in [54, 81]. We introduce a specific measure of error, the Root Mean
Square Error of Centroids (RMSEC), which a direct comparison between the centroids
predicted by the k-means algorithm and the ones predicted by the J-k-means. It is a way
to know how far the centroids are predicted. Note that this metric can only be applied
to the training set. For all these measures, except RMSEC, a bigger value is better. Our
simulations show that d-k-means, and thus the g-means, even for values of § (between
0.2 — 0.5) achieves similar performance to k-means, and in most cases the difference is on
the third decimal point.

Algo Dataset | ACC | HOM | COMP | V-M | AMI | ARI | RMSEC

Train 0.582 | 0.488 0.523 | 0.505 | 0.389 | 0.488 0
k-means

Test 0.592 | 0.500 | 0.535 | 0.517 | 0.404 | 0.499

Train | 0.580 | 0.488 | 0.523 | 0.505 | 0.387 | 0.488 0.009
0-k-means, § = 0.2

Test 0.591 | 0.499 | 0.535 | 0.516 | 0.404 | 0.498

Train | 0.577 | 0.481 | 0.517 | 0.498 | 0.379 | 0.481 0.019

0-k-means, 0 = 0.3 I 180 70.494 | 0.530 | 0511 | 0.396 | 0.493 -

Train | 0.573 | 0.464 | 0.526 | 0.493 | 0.377 | 0.464 0.020

0-k-means, 0 = 04— e 199 | 0.527 [ 0.500 | 0.304 | 0.491 -

Train | 0.573 | 0.459 | 0.522 | 0.488 | 0.371 | 0.459 0.034
d-k-means, 6 = 0.5

Test 0.584 | 0.487 | 0.523 | 0.505 | 0.389 | 0.487 -

Table 5.1: A sample of results collected from the same experiments as in Figure 5.1.
Different metrics are presented for the train set and the test set. ACC: accuracy. HOM:
homogeneity. COMP: completeness. V-M: v-measure. AMI: adjusted mutual information.
ARI: adjusted rand index. RMSEC: Root Mean Square Error of Centroids.
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These experiments have been repeated several times and each of them presented a
similar behavior despite the random initialization of the centroids.

Accuracy (%)
Accuracy (%)

————— qmeans (5= 05) - qrmeans (5
— kmeans — kmeans

0 5 10 15 £l 30 5 0 5 5 0 5 10 5 £l
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0
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(c)

Figure 5.2: Three accuracy evolutions on the MNIST dataset under k-means
and J-k-means for 4 different values of §. Each different behavior is due to
the random initialization of the centroids

Finally, we present a last experiment with the MNIST dataset with a different data
preprocessing. In order to reach higher accuracy in the clustering, we replace the previous
dimensionality reduction by a Linear Discriminant Analysis (LDA). Note that a LDA is
a supervised process that uses the labels (here, the digits) to project points in a well
chosen lower dimensional subspace. Thus this preprocessing cannot be applied in practice
in unsupervised machine learning. However, for the sake of benchmarking, by doing so
k-means is able to reach a 87% accuracy, therefore it allows us to compare k-means and 6-
k-means on a real and almost well-clusterable dataset. In the following, the MNIST dataset
is reduced to 9 dimensions. The results in Figure 5.3 show that J-k-means converges to
the same accuracy than k-means even for values of 7/ down to 16. In some other cases,
0-k-means shows a faster convergence, due to random fluctuations that can help escape
faster from a temporary equilibrium of the clusters.
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Figure 5.3: Accuracy evolution on the MNIST dataset under k-means and
d-k-means for 4 different values of §. Data has been preprocessed to 9 dimensions
with a LDA reduction. All versions of d-k-means converge to the same accuracy
than k-means in the same number of steps.

Algo Dataset | ACC | HOM | COMP | V-M | AMI | ARI | RMSEC
Train 0.868 | 0.736 0.737 | 0.737 | 0.735 | 0.736 0
Test 0.891 | 0.772 0.773 | 0.773 | 0.776 | 0.771 -
Train 0.868 | 0.737 0.738 0.738 | 0.736 | 0.737 0.031
Test 0.891 | 0.774 0.775 0.775 | 0.777 | 0.774 -
Train 0.869 | 0.737 0.739 | 0.738 | 0.736 | 0.737 0.049
Test 0.890 | 0.772 0.774 | 0.773 | 0.775 | 0.772 -
Train 0.865 | 0.733 0.735 0.734 | 0.730 | 0.733 0.064
Test 0.889 | 0.770 0.771 0.770 | 0.773 | 0.769 -
Train 0.866 | 0.733 0.735 0.734 | 0.731 | 0.733 0.079
Test 0.884 | 0.764 0.766 | 0.765 | 0.764 | 0.764 -

k-means

g-means, § = 0.2

g-means, 6 = 0.3

g-means, 6 = 0.4

g-means, 6 = 0.5

Table 5.2: A sample of results collected from the same experiments as in Figure 5.3.
Different metrics are presented for the train set and the test set. ACC: accuracy. HOM:
homogeneity. COMP: completeness. V-M: v-measure. AMI: adjusted mutual information.
ARI: adjusted rand index. RMSEC: Root Mean Square Error of Centroids.

Let us remark, that the values of 7/ in our experiment remained between 3 and 20.
Moreover, the parameter 7, which is the maximum square norm of the points, provides
a worst case guarantee for the algorithm, while one can expect that the running time in
practice will scale with the average square norm of the points. For the MNIST dataset
after PCA, this value is 2.65 whereas 1 = 8.3.

In conclusion, our simulations show that the convergence of §-k-means is almost the
same as the regular k-means algorithms for values of § which are sufficiently large. This
provides evidence that the g-means algorithm will have as good performance as the classical
k-means, and its running time will be significantly lower for large datasets.

5.6 Conclusions

In this chapter we developed g-means, the quantum version of the k-means algorithm, the-
oretically analyzed its asymptotic running time and tested the convergence of this iterative
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algorithm on the MNIST dataset. The g-means is a clustering algorithm with provable
guarantees on its runtime, and opens the way for quantum applications in unsupervised
learning. In this work we ameliorated and better formalized subroutines to estimate dis-
tances and inner products between vectors. Moreover, this work made it clear that often
when writing a quantum machine learning algorithm it is necessary to slightly modify the
original definition of the classical model under consideration, so as to take the error of the
quantum procedures into account. As we will see in the next chapter, this will also be the
case for Gaussian mixture model, a generalization of k-means.



78

CHAPTER 5. Q-MEANS



Chapter 6

Quantum
Expectation-Maximization

In this section we put forward the quantum version of Expectation-Maximization (EM).
EM is a versatile iterative algorithm that have been broadly used (and discovered) in many
part of machine learning and statistics. As is common in machine learning literature, we
introduce the Expectation-Maximization algorithm by using it to fit Gaussian mixture
models (GMM). As the name hints, a Gaussian mixture model is a way of describing a
probability density function as a combination of different Gaussian distributions. GMM,
and in general all the mixture models, are a popular generative model in machine learning.

6.1 Expectation-Maximization and Gaussian mixture
models

The intuition behind mixture models is to model complicated distributions by using a
group of simpler (usually uni-modal) distributions. In this setting, the purpose of the
learning algorithm is to model the data by fitting the joint probability distribution which
most likely have generated our samples. Recall that, given a sufficiently large number of
mixture components, it is possible to approximate any density defined in R¢ [110]. In
this section we describe formally GMM, which is a popular mixture model used to solve
unsupervised classification problems. Then we propose the first quantum algorithm to fit
a GMM with a quantum computer. While there are many classical algorithms that can be
used to fit a mixture of Gaussians (which we detail later), this quantum algorithm resemble
as much as possible Expectation-Maximization: a iterative method to find (local) maxima
of maximum likelihood and maximum a posteriori optimization problems, especially used
in unsupervised settings.

Recall that in the unsupervised case, we are given a training set of unlabeled vectors
vy -+ vy € R% which we represent as rows of a matrix V' € R™*4 Let y; € [k] one of the k
possible labels for a point v;. We posit that for a GMM the joint probability distribution
of the data p(v;,y:) = p(vi|yi)p(y:), is defined as follow: y; ~ Multinomial(#) for § € R¥,
and p(vily; = j) ~ N(p;,%;). The 6; are the mizing weights, i.e. the probabilities that
y; = j, and N(u;,3;) is the Gaussian distribution centered in p; € R? with covariance
matrix X, € R?*4. Note that the variables y; are unobserved, and thus are called latent
variables. There is a simple interpretation for this model. We assume the data is created
by first selecting an index j € [k] by sampling according to Multinomial(), and then a
vector v; is sampled from N(u;, X;). Fitting a GMM to a dataset reduces to finding an
assignment for the parameters:

7:(67I"L72):(97M17"'7Mk7217"'72k) (61)
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that best maximize the log-likelihood (defined in Section 3) for a given dataset. We
will now see how the log-likelihood is defined for a GMM. We use the letter ¢ to represent
our base distribution, which in this case is the probability density function of a Gaussian

N(p, 2): ) )
e, ) = G o (50— W= -0 (62)

With this formulation, a GMM is expressed as:
k
p(v) = 0;8(v; 1y, %) (6:3)
j=1

where 0; are the mizing weights of the multinomial distribution such that 25:1 0; = 1.
The probability for an observation v; to be assigned to the component j is given by:

‘ 0,0(vii 1y, 55
rij = pyi = jlvi; 0,1, 8) = —* Wi 15, 55) (6.4)
2oi—1 iz pu, )
This value is called responsibility, and corresponds to the posterior probability of the sample
1 being assigned label j by the current model. More generally, for any base distribution in
the mixture, the responsibility of the i-th vector in cluster j can be written as [110]:

p(yi = j;V)p(vilyi = j;7)
k . .
> =1 P(Wi = 35 v)p(ilyi = 35 7)

(6.5)

Tij =

As anticipated, to find the best parameters of our generative model, we maximize the
log-likelihood of the data. To conclude, for GMM, the likelihood is given by the following
formula [111]:

n n k
Uy V) =000, 1, V) =Y logp(vi; 0,1, %) = log > p(vilyi s 1, Z)p(yis0) (6.6)
1=1

i=1 yi=1

Alas, it is seldom possible to solve maximum likelihood estimation analytically (i.e.
by finding the zeroes of the derivatives of Equation (6.6)), and this is one of those cases.
Expectation-Maximization is an iterative algorithm that solves numerically the optimiza-
tion problem of ML estimation. To complicate things, the likelihood function for GMM is
not convex, and thus we might find some local minima [31]. Note that the algorithm used
to fit GMM can return a local minimum which might be different than v*: the model that
represents the global optimum of the likelihood function.

6.1.1 Expectation-Maximization for GMM

The intuition behind EM is simple. If we were to know the latent variable y;, then the
log-likelihood for GMM would be:

n
Uy V) =Y logp(v; | yi; 1, 2) + log p(yi; 6) (6.7)

i=1
This formula can be easily maximized with respect to the parameters 6, u, and 3. In
the Expectation step we calculate the missing variables y;, given a guess of the parameters
(0, u, X) of the model. Then, in the Maximization step, we use the estimate of the latent
variables obtained in the Expectation step to update the estimate of the parameters. While
in the Expectation step we calculate a lower bound on the likelihood, in the Maximization
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step we maximize it. Since at each iteration the likelihood can only increase, the algorithm
is guaranteed to converge, albeit possibly to a local optimum (see [81] for the proof). During
the Expectation step all the responsibilities are calculated, while in the Maximization step
we update our estimate on the parameters v/T1 = (¢+1 i+l i+1)

The stopping criterion for GMM is usually a threshold on the increment of the log-
likelihood: if the log-likelihood changes less than a threshold between two iterations, then
the algorithm stops. Notice that, since the value of the log-likelihood significantly depends
on the amount of data points in the training sets, it is often preferable to adopt a scale-free
stopping criterion, which does not depend on the number of samples. For instance, in
the toolkit scikit-learn [110] the stopping criterion is given by a tolerance on the average
increment of the log-probability, which is chosen to be smaller than a certain e,, say 1073,
More precisely, the stopping criterion is [E[log p(v;;7?)] — Ellog p(vi; vt *1)]| < €, which we

can estimate as [+ 3" logp(vi;7") — 2 300 log p(vi; 7' )| < €.

Algorithm 6 Expectation-Maximization for GMM

Require: Dataset V', tolerance 7 > 0.
Ensure: A GMM ~! = (6%, ut, X%) that maximizes locally the likelihood £(v; V) up to
tolerance 7.

Select 49 = (8°, u°, 29) using classical initialization strategies described in Subsection
6.1.2.

1:t=0
2: repeat
3: Expectation
4: Vi, j, calculate the responsibilities as:
I R ) 65)
v Zk 9t¢(v-' t ) ’
1=1 Y1 P\Vi5 [y 24
5: Maximization
6: Update the parameters of the model as:
1 n
it - >l (6.9)
i=1
noot
t+1 Zi:l Ti;0i
W e = (6.10)
’ Zi:l ng
’L rt.. V; — t,+1 Vi — t.+1 T
D iz ij Ti( b (6.11)
i=1"4j
7 t=t+1
8: until
9:
(Y HV) LSV <7 (6.12)

10: Return ~% = (0%, ut, 3t)

6.1.2 Initialization strategies for EM

Unlike k-means clustering, choosing a good set of initial parameters for a mixture of Gaus-
sian is by no means trivial, and in multivariate context is known that the solution is
problem-dependent. There are plenty of proposed techniques, and here we describe a few
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of them. Fortunately, these initialization strategies can be directly translated into quantum
subroutines without impacting the overall running time of the quantum algorithm.

The simplest technique is called random EM, and consists in selecting initial points at
random from the dataset as centroids, and sample the dataset to estimate the covariance
matrix of the data. Then these estimates are used as the starting configuration of the
model, and we may repeat the random sampling until we get satisfactory results.

A more standard technique borrows directly the initialization strategy of k-means+-+
proposed in [14], and extends it to make an initial guess for the covariance matrices and the
mixing weights. The initial guess for the centroids is selected by sampling from a suitable,
easy to calculate distribution. This heuristic works as following: Let ¢y be a randomly
selected point of the dataset, as first centroid. The other k& — 1 centroids are selected
by selecting a vector v; with probability proportional to d?(v;, Hi(v;)), Where g,y is the
previously selected centroid that is the closest to v; in £5 distance. These centroids are
then used as initial centroids for a round of k-means algorithm to obtain u{ - - M?'- Then,
the covariance matrices can be initialized as X9 := ﬁ Ziecj (v; — pj)(vi — py)T
C; is the set of samples in the training set that have been assigned to the cluster j in the
previous round of k-means. The mixing weights are estimated as C;/n. Eventually E? is
regularized to be a PSD matrix.

There are other possible choices for parameter initialization in EM, for instance, based
on Hierarchical Agglomerative Clustering (HAC) and the CEM algorithm. In CEM we run
one step of EM, but with a so-called classification step between E and M. The classification
step consists in a hard-clustering after computing the initial conditional probabilities (in
the E step). The M step then calculates the initial guess of the parameters [36]. In the small
EM initialization method we run EM with a different choice of initial parameters using
some of the previous strategies. The difference here is that we repeat the EM algorithm
for a few numbers of iterations, and we keep iterating from the choice of parameters that
returned the best partial results. For an overview and comparison of different initialization
techniques, we refer to [30, 27].

, where

Special cases of GMM. What we presented in the previous section is the most general
model of GMM. For simple datasets, it is common to assume some restrictions on the
covariance matrices of the mixtures. The translation into a quantum version of the model
should be straightforward. We distinguish between these cases:

1. Soft k-means. This algorithm is often presented as a generalization of k-means,
but it can actually be seen as special case of EM for GMM - albeit with a different
assignment rule. In soft k-means, the assignment function is replaced by a softmax
function with stiffness parameter 8. This [ represents the covariance of the clusters.
It is assumed to be equal for all the clusters, and for all dimensions of the feature
space. Gaussian Mixtures with constant covariance matrix (i.e. £; = 81 for § € R)
can be interpreted as a kind of soft or fuzzy version of k-means clustering. The
probability of a point in the feature space being assigned to a certain cluster j is:

e—Bllzi—pi I

Tk Bl
S Bl

’I"ij

where 8 > 0 is the stiffness parameter.

2. Spherical. In this model, each component has its own covariance matrix, but the
variance is uniform in all the directions, thus reducing the covariance matrix to a
multiple of the identity matrix (i.e. ¥; = 0]2[ for o; € R).

3. Diagonal. As the name suggests, in this special case the covariance matrix of the dis-
tributions is a diagonal matrix, but different Gaussians might have different diagonal
covariance matrices.
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4. Tied. In this model, the Gaussians share the same covariance matrix, without having
further restriction on the Gaussian.

5. Full. This is the most general case, where each of the components of the mixture
have a different, SDP, covariance matrix.

6.1.3 Dataset assumptions in GMM

We make explicit an assumption on the dataset, namely that all elements of the mixture
contribute proportionally to the total responsibility:

%i;j —0(1) Vjle ] (6.13)

This is equivalent to assuming that 6;/6; = ©(1) Vj,l € [k]. The algorithm we propose
can of course be used even in cases where this assumption does not hold. In this case, the
running time will include a factor as in Eq. 6.13 which for simplicity we have taken as
constant in what follows. Note that classical algorithms would also find it difficult to fit
the data in certain cases, for example when some of the clusters are very small. In fact,
it is known (and not surprising) that if the statistical distance between the probability
density function of two different Gaussian distributions is smaller than 1/2, then we can
not tell for a point v from which Gaussian distribution it belongs to, even if we knew the
parameters [109]. Only for convenience in the analysis, we also assume the dataset as being
normalized such that the shortest vector has norm 1 and define 7 := maxz; ||'UZH2 to be the
maximum norm squared of a vector in the dataset.

6.1.4 EM and other mixture models

Expectation-Maximization is widely used for fitting mixture models in machine learning
[110]. Most mixture models use a base distribution in the exponential family: Poisson [42]
(when the observations are a mixture of random counts with a fixed rate of occurrences),
Binomial and Multinomial (when the observations have 2 or multiple possible outcomes,

like answers in a survey or a vote) and log-normal [53], exponential (when samples have
a latent variable that represents a failure of a certain kind, which is often modeled by the
exponential distribution) [66], Dirichlet multinomial [154], and others.

Besides fitting mixture models based on the exponential family, the EM algorithm has
several other applications. It has been used to fit mixtures of experts, mixtures of the
student T distribution (which does not belong to the exponential family, and can be fitted
with EM using [98]) and for factor analysis, probit regression, and learning Hidden Markov
Models [110].

Theorem 50 (Multivariate Mean Value theorem [126]). Let U be an open set of R, For
a differentiable functions f : U — R it holds that Va,y € U, Jc such that f(z) — f(y) =

V(e (z—y).

Proof. Define h : [0,1] — U where h(t) = x + t(y — ). We can define a new function
g(t) := foh = f(x +t(y —x)). Note that both functions are differentiable, and so its

their composition. Therefore, we can compute the derivative of g using the chain rule:
g = (foh) =(f oh)h'. This gives:

g'(t) = (Vf(h(®), (1) = (f(z + ty — @),y — x)

Because of the one-dimensional Mean Value theorem applied to ¢’(t), we have that 3ty such
that g(1) —g(0) = f(y) — f(x) = ¢'(to) = (f(x+1to(y —)), y — ). Setting c = x+to(y— ),
we have that f(y) — f(z) = Vf(¢) - (y — x). The second statement follows directly by
Cauchy-Schwarz. O
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Theorem 51 (Componentwise Softmaz function o (v) is Lipschitz continuous). Ford > 2,

leta; : R% — (0,1) be the softmax function defined as oj(v) = % Then o; is Lipschitz

Zl:l

continuous, with K < /2.

Proof. We need to find the K such that for all z,y € R?, we have that ||o;(y) — o;(2)| <
K|y —z||. Observing that o; is differentiable and that if we apply Cauchy-Schwarz
to the statement of the Mean-Value-theorem we derive that Va,y € U, Jc such that
I f(x) = f)ll < IVF()pllz—yl. So to show Lipschitz continuity it is enough to se-
lect K < [|[Vo||7 = max,cga [|[Vo;(c)].

The partial derivatives dgd%v(f) are 0;(v)(1 —o;(v)) if i = j and —o;(v)o;(v) otherwise.

(
So Vol = Sisi (—0(v)i0;(0))? + 05(0)2(1 = 05(v))? < Y0} 0 (v)io;(v) + 05(0)(1 —
o;(v)) < g;(v) Zf;ol 0;(v) +1—0j(v) < 20;(v) < 2. In our case we can deduce that:
loj () = o(2)]| < V2[ly — 2] so K < V2. -

6.2 Quantum Expectation-Maximization for GMM

In this section, we present a quantum Expectation-Maximization algorithm to fit a GMM.
The algorithm can also be adapted to fit other mixtures models where the probability
distributions belong to the exponential family. As the GMM is both intuitive and one of
the most widely used mixture models, our results are presented for the GMM case.

An approximate version of GMM Here we define an approximate version of GMM,
that we fit with QEM algorithm. The difference between this formalization and the original
GMM is simple. Here we make explicit in the model the approrimation error introduced
during the iterations of the training algorithm.

Definition 52 (Approximate GMM). Let v* = (0%, pt, E") = (0%, b ---pb XL 1) a
model fitted by the standard EM algorithm from v° an initial guess of the parameters, i.e.
~t is the error-free model that standard EM would have returned after t iterations. Starting
from the same choice of initial parameters ~°, fitting a GMM with the QEM algorithm with
A = (8p,96,) means returning a model ' = (gt,ﬁt,ft) such that:

‘@t _g

< 59;
o ||t - M;H <94, forallje€ k],

= -

< Ouy/m  forall j € [K].

Quantum access to the mixture model Here we explain how to load into a quantum
computer a GMM and a dataset represented by a matrix V. This is needed for a quantum
computer to be able to work with a machine learning model. The definition of quantum
access to other kind of models is analogous. For ease of exposure, we define what does it
means to have quantum access to a GMM and its dataset. This definition is basically an
extension of theorem 8.

Definition 53 (Quantum access to a GMM). We say that we have quantum access to a
GMM of a dataset V € R™*¢ and model parameters 0; € R, p; € Rd,Ej € R for all
J € [k] if we can perform in time O(polylog(d)) the following mappings:

o [5)10) = 15) |15,
o ) ]d)[0) = |3} |3) |o) for i € [d] where o is the i-th rows of &; € R¥¥4,
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e |i)]0) — |i) |v;) for alli € [n],
o [i)|0) |0) = [} [vec[viv]]) = [d) |vi) [vi) for i € [n],

® 15)10) = 15) 105)-

Algorithm 7 QEM for GMM

Require: Quantum access to a GMM model, precision parameters dg,6,,, and threshold
€.

Ensure: A GMM 7' that maximizes locally the likelihood £(vy; V'), up to tolerance €.

1: Use a heuristic (like lemma 5.3 in Chapter 5) to determine the initial guess 7° =
(6°, 1%, 39), and build quantum access as in definition 53 those parameters.

2: Use lemma 66 to estimate the log determinant of the matrices {Zg}?zl.

3: t=0

4: repeat

5: Step 1: Get an estimate of §**! using lemma 57 such that gt gt ‘ < dy.

6: Step 2: Get an estimate {fz;"™* ;?:1 by using lemma 59 to estimate each H,u;HH
and |u§-+1> such that H,u?'l —,LTjH'lH < 0y

7 Step 3: Get an estimate {27“ ?:1 by using lemma 60 to estimate |}E§+1 ||F and

|E§+1> such that HE;H —ijt+1" < 0u/1-

8: Step 4: Estimate E[p(v;;vt*1)] up to error e, /2 using theorem 61.

9: Step 5: Build quantum access to v/71, and use lemma 66 to estimate the determi-
nants {log det(E;H) ko

10: t=t+1

11: until

[E[p(vi;v")] — Elp(vi; v ]| < -

12: Return 7' = (gt,ﬁtvit)

Quantum initialization strategies For the initialization of 7° in the quantum algo-
rithm we can use the same initialization strategies as in classical machine learning. For
instance, we can use the classical random EM initialization strategy for QEM.

A quantum initialization strategy can also be given using the k-means++ initializion
strategy, which we discuss in Chapter 5. It returns k initial guesses for the centroids ¢! - - - c,g

. . . . . . onl-5 .
consistent with the classical algorithm in time (kQM), where E(d? (v, vj)) is

the average squared distance between two points of the dataset, and € is the tolerance in
the distance estimation. From there, we can perform a full round of g-means algorithm
and get an estimate for u{ - - - 9. With q-means and the new centroids store in the QRAM
we can create the state

0) = % ; i) 1(02)) (6.14)

Where [(v;) is the label of the closest centroid to the i-th point. By sampling S € O(d)
points from this state we get two things. First, from the frequency f; of the second register
we can have an guess of 69 < |C;|/n ~ f;/S. Then, from the first register we can estimate
29— Yies(vi — ) (vi — p9)T. Sampling O(d) points and creating the state in Equation
(6.14) takes time O(dkn) by theorem 30 and the minimum finding procedure, i.e. lemma
46.
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Techniques illustrated in [108] can also be used to quantize the CEM algorithm which
needs a hard-clustering step. Among the different possible approaches, the random and
the small EM greatly benefit from a faster algorithm, as we can spend more time exploring
the space of the parameters by starting from different initial seeds, and thus avoid local
minima of the likelihood.

6.2.1 Expectation

In this step of the quantum algorithm we are just showing how to compute efficiently the
responsibilities as a quantum state. First, we compute the responsibilities in a quantum
register, and then we show how to put them as amplitudes of a quantum state. At each
iteration of Quantum Expectation-Maximization (specifically, in the Expectation step), we
assume to have quantum access to the determinant of the covariance matrices. In Chapter
7 we will detail quantum algorithms for the problem of computing the log-determinant.
From the error analysis we will see that the cost of comping the log-determinant of the
covariance matrices (even with classical algorithms) is smaller than the cost of the ohter
quantum step, we can discard the cost of computing the log-determinant in the analysis
of the quatnum algorithms. Thus, we do not explicitly write the time to compute the
determinant from now on in the algorithm and when we say that we update ¥ we include
an update on the estimate of log(det (X)) as well. Classical algorithms often depend linearly
on nnz()|log(det(X))|, which can be upper bounded by O(d2), where d is the dimension
of the covariance matrix. Note that it is often the case that GMM is run with diagonal
covariance matrix, thus making the estimation of the determiant trivial.

Lemma 54 (Quantum Gaussian Evaluation). Suppose we have stored in the QRAM a
matriz V. € R™¥4, the centroid € R? and a SPD covariance matriz ¥ € R4 of a
multivariate Gaussian distribution ¢(v|p,X), such that ||| < 1. Also assume to have an
absolute €1/2 estimate for log(det(X)). Then for eg > 0, there exists a quantum algorithm
that with probability 1 —-y performs the mapping Ug,e, : |i) |0) — |i) |37) such that |s; —§;] <
€1, where s; = —3((v; — p)T'E 7 (v; — p) + dlog 2m + log(det(X))) is the exponent for the
Gaussian probability density function in Equation (6.2). The running time of the algorithm

’ R(Z)(E) log(1/) n) |

€1

Tg,e =0 ( (6.15)
Proof. We use quantum linear algebra and inner product estimation to estimate the quadratic
form (v; — u)TE 7Y (v; — p) to error €;. We decompose the quadratic form as vl S~ 1v; —
207 %7y + pTS 7y and separately approximate each term in the sum to error €;/8 us-
ing lemma 31. The runtime for this operation is O(%’i(z)”) With this, we obtain an

estimate for $((v; — p)"S 7! (v; — p) within error €;. Recall that (through the algorithm
in lemma 66 we also have an estimate of the log-determinant to error €;/2. With these
factors, we obtain an approximation for —%((v; — p)TS! (v; — p) + dlog 27 + log(det (X))

within error ;. O

Using controlled operations it is simple to extend the previous theorem to work with
multiple Gaussians distributions (u;,3;). That is, we can control on a register |j) to
do |7) 1) [0) — |7) |2) |¢(vi|pj,2;5)). In the next lemma we will see how to obtain the
responsibilities r;; using the previous theorem and standard quantum circuits for doing
arithmetic, controlled rotations, and amplitude amplification. The lemma is stated in a
general way, to be used with any probability distributions that belong to an exponential
family.

Lemma 55 (Error in the responsibilities of the exponential family). Let v; € R™ be a
vector, and let {p(vi|uj)}§:1 be a set of k probability distributions in the exponential family,
defined as p(vilvj) == hj(vi)exp{o;(v;)TT;(v;) — Aj(vj)}. Then, if we have estimates for
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each exponent with error e, then we can compute each r;; such that [F;; — rij| < 2ke for
j € k]
Proof. The proof follows from rewriting the responsibility of Equation (6.8) and (6.5) as
iy = ilj(vi)exp{oj(Vj)TT(w) — A;j(vj) +logb;} (6.16)
> hi(vi) exp{oi(v)TT (v;) — Ai(v;) +logb}
=1

In this form, it is clear that the responsibilities can be seen a softmaz function, and we can
use theorem 51 to bound the error in computing this value.

Let T; € R* be the vector of the exponent, that is t;; = 0,(v;)TT(v;) — A;(v;) + log 6.
In an analogous way we define T; the vector where each component is the estimate with
error €. The error in the responsibility is defined as |r;; — 7i;| = |o;(T;) — 0;(T3)|. Because
the function o is Lipschitz continuous, as we proved in theorem 51 with a Lipschitz
constant K < /2, we have that, |o;(T;) — 0;(T})| < V2 ||TZ - TZH The result follows as

T~ Ti|| < vVke. 0

The next lemma provides a quantum algorithm for calculating the responsibilities for
the particular case of a Gaussian mixture model.

Lemma 56 (Calculating responsibilities). Suppose we have quantum access to a GMM
with parameters v* = (0%, ut, X'). There are quantum algorithms that can:

1. Perform the mapping |i) |7) |0) — |2) |7) |75;) such that [T7; —rij| < €1 with probability
1 — 7~ in time: _
TRy e = O(kl‘5 xTg 61)

2. For a given j € [k], construct state |R;) such that < €1 where

1) = Sl

Z; = > rij with high probability in time:
i=0

TR2,€1 = 5(k2 X TR17€1)

Proof. For the first statement, let’s recall the definition of responsibility: r;; =

With the aid of Ug ., of lemma 54 we can estimate log(¢(v;|p;, X;)) for all j up to additive
error €;, and then using the current estimate of 6%, we can calculate the responsibilities

create the state,
n k
1 ) N ———————— .
T 22 1) (@) gl ) )  755)
i=0 j=1

The estimate 7;; is computed by evaluating a weighted softmax function with arguments
log(¢(vi|pj,%;) for j € [k]. The estimates log(¢(vi|u;,%;) are then uncomputed. The
runtime of the procedure is given by calling k times lemma 54 for Gaussian estimation (the
arithmetic operations to calculate the responsibilities are absorbed).

Let us analyze the error in the estimation of r;;. The responsibility r;; is a softmax
function with arguments log(é(v;|p;,2;)) that are computed up to error €; using lemma
54. As the softmax function has a Llpschltz constant K < /2 2 by lemma 55, we choose
precision for lemma 54 to be €;/v/2k to get the guarantee |7;; — 7;;| < €. Thus, the total
cost of this step is Tg, o, = k'9Tg ., -

Now let’s see how to encode this information in the amplitudes, as stated in the second
claim of the lemma. We estimate the responsibilities r;; to some precision ¢ and perform
a controlled rotation on an ancillary qubit to obtain,

| —
77 ) (75100 + /1 =752 1) ). (6.17)

0;p(visp; ;)
e .
lel 01 (vispe, )



88 CHAPTER 6. QUANTUM EXPECTATION-MAXIMIZATION

We then undo the circuit on the second register and perform amplitude amplification on
the rightmost auxiliary qubit being |0) to get |R;) := HRLH > oTij|i). The runtime for
J

amplitude amplification on this task is O(Tg, e - ”T‘ﬁ”)
i
Let us analyze the precision € required to prepare |R;) such that |||R F}H <

€1. As we have estimates |r;; — 7;;| < € for all 4,j, the f;-norm error HR

V2o |rij — 51 < v/ne. Applying Claim 16, the error for the normalized vector |RJ>

can be bounded as H |R;) — |R;) H <7 ;’,ﬁ. By the Cauchy-Schwarz inequality we have that

|R;| > Zf We can use this to obtain a bound |\\RF\| Zﬁ\/ﬁ = O(k), using the

dataset assumptions in section 6.1.3. If we choose € such that “l/}?l”& < e, that is e < 1 /k

then our runtime becomes Tr, , := O(k? X Tg, «,)-
O

6.2.2 Maximization

Now we need to get a new estimate for the parameters of our model. This is the idea: at each
iteration we recover the new parameters from the quantum algorithms as quantum states,
and then by performing tomography we can update the QRAM that gives us quantum
access to the GMM for the next iteration. In these sections we will show how.

Updating mixing weights 6

Lemma 57 (Computing 0T1). We assume quantum access to a GMM with parameters ~*
and let §g > 0 be a precision parameter. There exists an algorithm that estimates gtﬂ € RF
such that HHH_I 9t+1H < dg in time

Ty =0 <k3.5771,5f£(2()5/;(§3))
0

Proof. An estimate of 0§-+1 can be recovered from the following operations. First, we
use lemma 56 (part 1) to compute the responsibilities to error €;, and then perform the
following mapping, which consists of a controlled rotation on an auxiliary qubit:

WD ) ) Z| ) (7t 10} + /1= 75t 1) )

=1
The previous operation has a cost of Tg, ¢,, and the probability of getting |0) is p(0) =

Ly Z?Zl rl; = +. Now observe that, by definition, 5*" = L37"  rl. Let Z; =

St 7" and define state [\/R;) = ( e S TG ) . After amplitude amplifica-

tion on |0) we have the state,

|\/> \/‘Z rl] | |.7

‘Zf@?Zﬁ)

=1

= Z V&G T IVER) 1) (6.18)
j=1
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The probability of obtaining outcome |j) if the second register is measured in the standard
basis is p(j) = Oijt“. An estimate for #°* with precision e can be obtained by either
sampling the last register, or by performing amplitude estimation. In this case, we can
estimate each of the values 9;“ for j € [k]. Sampling requires O(e~2) samples to get
epsilon accuracy on 6 (by the Chernoff bounds), but does not incur any dependence on k.
As the number of cluster k is relatively small compared to 1/€, we chose to do amplitude

estimation to estimate all 0;“ for j € [k] to error ¢/v/k in time,

Ty =0 (k ‘/M;R> . (6.19)

We analyze the error in this procedure. The error introduced by the estimation of
—t+1

responsibility in lemma 56 is \HjH — 0 = L3577 — | < e for all j € [k], pushing

gt HtHH < Vke;. The total error in f5

+1

the error on the vector 1 € RF up to ‘

—t
norm due to amplitude estimation is at most € as it estimates each coordinate of 6;
to error €/vk. As the errors sums up additively, we can use the triangle inequality to
bound them. The total error is at most ¢ + v/ke;. As we require the final error to be

—t+1
o - OHIH < 69, we choose parameters Vke; < dp/2 = €1 < 2%%

upper bounded by ’
and € < dp/2. With these parameters, the overall running time of the quantum procedure
is T0 _ O(k.l.5 TR2=61 ) =0 (]{73‘5 ’71'5'”2[5(2)#(2))_
6
O

Updating the centroids p;

We use quantum linear algebra to transform the uniform superposition of responsibilities
of the j-th mixture into the new centroid of the j-th Gaussian. Let R§ € R™ be the vector
of responsibilities for a Gaussian j at iteration t. The following claim relates the vectors
t+1

t .
R; to the centroids p;

Claim 58. Let R§» € R"™ be the vector of responsibilities of the points for the Gaussian j

" t T pt
: : AT AR DAL T
at time t, i.e. (R); =rj;. Then ;™ <« S =

The proof is straightforward.

Lemma 59 (Computing ;43-“).

parameters v*. For a precision parameter §, > 0, there is a quantum algorithm that
calculates {,LTjH'l}?:l such that for all j € [k] ||m;"™ — u§+1|| <4, in time

~ (kdne(V) (u(V) + k35 3 k(2) (S
T,LO( (V) (1l H&g 'R ))>

We assume we have quantum access to a GMM with

Proof. A new centroid ug-H is estimated by first creating an approximation of the state
|R§> up to error €; in the fy-norm using part 2 of lemma 56. Then, we use the quantum
linear algebra algorithms in theorem 28 to multiply R; by VT, and obtain a state |/Tjt+1>
along with an estimate for the norm HVTRH‘ = H;Tj“'lH with error €. The last step
of the algorithm consists in estimating the unit vector \;Tjt*l> with precision €4, using o
tomography. The tomography depends linearly on d, which we expect to be bigger than
the precision required by the norm estimation. Thus, we assume that the runtime of the

norm estimation is absorbed by the runtime of tomography. We obtain a final runtime of
O (k- 5(V) (0(V) + Ty )

Let’s now analyze the total error in the estimation of the new centroids. In order
to satisfy the condition of the robust GMM of definition 52, we want the error on the
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centroids to be bounded by d,. For this, Claim 15 help us choose the parameters such
that \/7(€tom + €norm) = 6,. Since the error ez for quantum linear algebra appears as
a logarithmic factor in the running time, we can choose €3 < €4 without affecting the
runtime. -

Let 7@ be the classical unit vector obtained after quantum tomography, and |u) be the
state produced by the quantum linear algebra procedure starting with an approximation of
(ﬁ— Iu>H+Hlu> = [w) ’ <ete <
€tom < 0u/2,/n. The errors for the norm estimation procedure can be bounded similarly
as | ([l = llplll < Tlleell = Meelll Tl = Nelll < €3 + €1 < €norm < 6,,/24/m. We therefore
choose parameters €4 = €; = €3 < J,/4,/7. Again, as the amplitude estimation step we
use for estimating the norms does not depends on d, which is expected to dominate the
other parameters, we omit the cost for the amplitude estimation step. We have the more
concise expression for the running time of:

_ K 3.5 1.51,{
O<kdn (V) (u(V) +6§ U (Z)M(E))> (6.20)

|R). Using the triangle inequality we have |||u) — 7] <

O

Lemma 60 (Computing E;H). We assume we have quantum access to a GMM with pa-

rameters vt. We also have computed estimates /Tth of all centroids such that H/Tjt*l — u§-+1 H <
0, for precision parameter 6, > 0. Then, there exists a quantum algorithm that outputs

. . . wt+1 wt+1
estimates for the new covariance matrices {X; ?:1 such that HE?‘H - HF < 6./

with high probability, in time,

Ty = 6(’“d2nf€(V)(u(V’) ;3772'5/63'%(2)#(2)))

Proof. Tt is simple to check, that the update rule of the covariance matrix during the

maximization step can be reduced to [110, Exercise 11.2]:
n t+1 tHINT ,
s 2 i Mg (00 — )i — )N v L ()T (6.21)
’ 2T nbj Lo '
=% - u (T (6.22)

First, note that we can use the previously obtained estimates of the centroids to compute

the outer product ut-+1(u§+1)T with error d,, [|i| < d,/n. The error in the estimates of

J
the centroids is 7 = u + e where e is a vector of norm §,. Therefore HMMT —EETH <
2\/Mdy + 67, < 3,/Nd,. Because of this, we allow an error of \/7d, also for the term X
Now we discuss the procedure for estimating ). We estimate [vec[>}]) and ||vec[E;-} |- To
do it, we start by using quantum access to the norms and part 1 of lemma 6.8. With them,

for a cluster j, we start by creating the state |j) ﬁ >;12) |735), Then, we use quantum
access to the norms to store them into another register |j) ﬁ Yo i) [rij) |lJvsll). Using an

ancilla qubit we can obtain perform a rotation, controlled on the responsibilities and the
norm, and obtain the following state:

R o SPTTI a ]|
9 g Sl | z||>( I |0>+’v|1>)

We undo the unitary that created the responsibilities in the second register and the query
on the norm on the third register, and we perform amplitude amplification on the ancilla
qubit being zero. The resulting state can be obtained in time O(Rg, , %), where || V]|
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is /227 lvill®. Successively, we query the QRAM for the vectors v; and we obtain the
following state:

1 :
v 2 s il ) o) (6.23)

On which we can apply quantum linear algebra subroutine, multiplying the first register
with the matrix V7. This will lead us to the desired state 3;), along with an estimate of
its norm.

As the runtime for the norm estimation H(V)(“(VHTERz’” Dlog(1/emutt) a5 not depend on
d, we consider it smaller than the runtime for performfﬁrgmgomography. Thus, the runtime
for this operation is:

O( 28D VY (V) + Tty o)) Tog (1 emmute).

€tom

Let’s analyze the error of this procedure. We want a matrix 27; that is ,/nd,-close
279— D . vec[X!] — vec[>]] ‘2 < /M6,. Again, the error due
to matrix multiplication can be taken as small as necessary, since is inside a logarithm.

From Claim 15, we just need to fix the error of tomography and norm estimation such
that 7n(€unit + €norms) < /19, where we have used 7 as an upper bound on [|%;|| . For

=) -T2 < |2 - =5 + [ =D - 1= < e+ e <

, where %) is the error due to tomography and |¥) is the error due to the

to the correct one: ‘

the unit vectors, we require ‘
5”\/7]

N€unit <

resp0n81b1htles in lemma 56. For this inequality to be true, we choose €4 = €; < O/ f
The same argument apphes to estimating the norm HZ’ H with relative error : | ||E' H —

||Z;H| < |HZ;H — HZ;H\ + |HZ;H — [|Z5]|| < €+ e1 < 6,/2/n (where here € is the error of
the amplitude estimation step used in theorem 28 and € is the error in calling lemma 56.
Again, we choose € = €1 < “/‘f

Since the tomography is more costly than the amplitude estimation step, we can disre-
gard the runtime for the norm estimation step. As this operation is repeated k times for

the k£ different covariance matrices, the total runtime of the whole algorithm is given by
5(denH(V)(#(V)ggzkg"r’ﬁ(z)#(z))

). Let us also recall that for each of new computed covari-
m

ance matrices, we use lemma 66 to compute an estimate for their log-determinant and this
time can be absorbed in the time T5;. O

6.2.3 Quantum estimation of log-likelihood

Now we are going to show how it is possible to get an estimate of the log-likelihood using
a quantum procedure. A good estimate of the log-likelihood is crucial, as it is used as
stopping criteria for the quantum algorithm. Recall that the log-likelihood is defined as:

Zlogz 0;6(vi; 1y, S Zlogp Vi Y

JE[K]

Classically, we stop to iterate the EM algorithm when [£(7%; V) — £(4*T1; V)| < ne, or
equivalently, we can set a tolerance on the average increase of the log of the probability:

|E[log p(vi;7%)] — Efllog p(vi;4'™1)]| < €. In the quantum algorithm it is more practical to
estimate E[p(v;;7")] = £ 3" p(vi;y). From this we can estimate an upper bound on the

log-likelihood (with the help of the the Jensen inequality) as:

nlogE[p(v;)] ZlogE (v;) >ZlogpvZ =L(v;V)
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Lemma 61 (Quantum estimation of likelihood). We assume we have quantum access to
a GMM with parameters . For e, > 0, there exists a quantum algorithm that estimates
Elp(vi;yt)] with absolute error e, in time

T, =0 <k1‘5n1‘5"5(2)5(2)>

2
Proof. We obtain the likelihood from the ability to compute the value of a Gaussian distri-
bution and quantum arithmetic. Using the mapping of lemma 54 with precision €1, we can
compute ¢(v;|p;,%;) for all the Gaussians. We can build the state |i) ®;:é 17) [p(vilg;75))-
Then, by knowing 6, and by using quantum arithmetic we can compute in a register the
probability of a point belonging to the mixture of Gaussian’s: p(vi;y) = >_ ;¢ 05p(vilj57)
(note that this operation require undoing the previous steps). for simplicity, we now drop
the notation for the model v and write p(v;) instead of p(v;;7). Doing the previous calcu-
lations in a quantum computer, leads to the creation of the state |i) [p(v;)). To get an es-

timate of E[p(v;)], we perform the mapping |) [p(v;)) > |i) (, /o] 10) + /T — plvy) |1>)

and estimate p(|0)) ~ E[p(v;)] with amplitude estimation on the ancilla qubit being zero.
To get a e.-estimate of p(0) we need to decide the precision parameter we use for

estimating p(v;|7; v) and the precision required by amplitude estimation. Let p(0) be the €;-
error introduced by using lemma 54 and p(0) the error introduced by amplitude estimation.
Using triangle inequality we set Hp(O) —p(O)H < Hp(O) —p(O)H + Hp(O) - p(O)H < €.

To have |p(0) — p(0)| < e, we should set €; such that |p(0) — p(0)| < €;/4, and we
set the error in amplitude estimation and in the estimation of the probabilities to be €. /2.
The runtime of this procedure is therefore:

O |- ) 1 _ A5 1.5,M
O(k TGe. 57m> O(k 7 2 >

6.2.4 Quantum MAP estimate of GMM

Maximum likelihood is not the only way to estimate the parameters of a model, and in
certain cases might not even be the best one. For instance, in high-dimensional spaces,
it is standard practice for ML estimates to overfit. Moreover, it is often the case that we
have prior information on the distribution of the parameters, and we would like our models
to take this information into account. These issues are often addressed using a Bayesian
approach, i.e. by using a so-called Maximum a posteriori estimate (MAP) of a model [110,
Section 14.4.2.8]. MAP estimates work by assuming the existence of a prior distribution
over the parameters . The posterior distribution we use as objective function to maximize
comes from the Bayes’ rule applied on the likelihood, which gives the posterior as a product
of the likelihood and the prior, normalized by t?e e)vi(d?nce. More simply, we use the Bayes’
_ p(Viv)p(y

rule on the likelihood function, as p(y; V) = S0 This allows us to treat the model

~ as a random variable, and derive from the ML estimate a MAP estimate:

n
TMAP = arg}ynaxz log p(7[vi) (6.24)

i=1
Among the advantages of a MAP estimate over ML is that it avoids overfitting by having
a kind of regularization effect on the model [110, Section 6.5]. Another feature consists
in injecting into a maximum likelihood model some external information, perhaps from
domain experts. This advantage comes at the cost of requiring “good” prior information
on the problem, which might be non-trivial. In terms of labelling, a MAP estimates
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correspond to a hard clustering, where the label of the point v; is decided according to the
following rule:

y; = argmaxr;; = arg maxlog p(v|y; = j;7) + log p(y; = j;7) (6.25)
J J

Deriving the previous expression is straightforward using the Bayes’ rule, and by noting
that the softmax is rank-preserving, and we can discard the denominator of 7;; - since it
does not depend on v - and it is shared among all the other responsibilities of the points
v;. Thus, from Equation 6.24 we can conveniently derive Equation 6.25 as a proxy for
the label. Fitting a model with MAP estimate is commonly done via the EM algorithm
as well. The Expectation step of EM remains unchanged, but the update rules of the
Maximization step are slightly different. In this work we only discuss the GMM case, for
the other cases the interested reader is encouraged to see the relevant literature. For GMM,
the prior on the mixing weight is often modeled using the Dirichlet distribution, that is
§; ~ Dir(ax). For the rest of parameters, we assume that the conjugate prior is of the
form p(p;,2;) = NIW (u;, X5|mo, to, Yo, So), where NIW (p;, ;) is the Normal-inverse-
Wishart distribution. The probability density function of the NIW is the product between a
multivariate normal ¢(p|mo, 23) and a inverse Wishart distribution W1 (3|So, v9). NIW
has as support vectors p with mean po and covariance matrices %Z where ¥ is a random
variable with inverse Wishart distribution over positive definite matrices. NIW is often
the distribution of choice in these cases, as is the conjugate prior of a multivariate normal
distribution with unknown mean and covariance matrix. A shorthand notation, let’s define
ri =mn; = 3" ri;. As in [110], we also denote with Z;** and S; " the maximum
likelihood estimate of the parameters (,LL;—H)ML and (Z§+1)ML. For MAP, the update
rules are the following;:

t+1 T’j -+ Cvj —1

0’ %—n—s—z.a-—k‘ (6.26)
7 7
—t+1
t+1 T + tomy 6.97
1 e (6.27)
S §t+1 LT (—t+1 —t+1 T
sl otS; s (@' —mo) (T —my) (6.28)
J vo+ 1+ d+ 2 '
Where the matrix Sy is defined as:

SO = kl/d Dlag(S%, e ’S?l)’ (629)

where each value s; is computed as s; :== 2 3" | (2;; — i, @;;))? which is the pooled
variance for each of the dimension j. For more information on the advantages, disadvan-
tages, and common choice of parameters of a MAP estimate, we refer the interested reader
to [110]. Using the QEM algorithm to fit a MAP estimate is straightforward, since once
the ML estimate of the parameter is recovered from the quantum procedures, the update
rules can be computed classically.

Corollary 62 (QEM for MAP estimates of GMM). We assume we have quantum access
to a GMM with parameters v*. For parameters 8g,0,,¢. > 0, the running time of one
iteration of the quantum mazimum a posteriori (QMAP) algorithm is

OTy+T,+Ts+Ty),
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for
T, = O(k35 15F (E)>
T, - O(kdnn V) 5]235 ok (E)M(Z))>
T, — O(kd%m (V’);n“k35 K(Z )M(Z)))
T, = O(kls 158 (Z)>

For the range of parameters of interest, the running time is dominated by T;.

6.3 Experiments

In this section, we present the results of some experiments on real datasets to estimate the
runtime of the algorithm, and bound the value of the parameters that governs the runtime,
like k(2), k(V), u(X), u(V), dg, and 6,,, and we give heuristic for dealing with the condition
number. We can put a threshold on the condition number of the matrices X, by discarding
singular values which are smaller than a certain threshold. This might decrease the runtime
of the algorithm without impacting its performances. This is indeed done often in classical
machine learning models, since discarding the eigenvalues smaller than a certain threshold
might even improve upon the metric under consideration (i.e. often the accuracy), by acting
as a form of regularization [110, Section 6.5]. This is equivalent to limiting the eccentricity
of the Gaussians. We can do similar considerations for putting a threshold on the condition
number of the dataset x(V). Recall that the value of the condition number of the matrix V'
is approximately 1/ min({01, - , 04} U {dut(N (s, %), N (1, ;)i # j € [k]}), where do
is the statistical distance between two Gaussian distributions [35]. We have some choice
in picking the definition for u: in previous experiments it has been found that choosing
the maximum ¢; norm of the rows of V lead to values of (V') around 10 for the MNIST
dataset [39, 93]. Because of the way p is defined, its value will not increase significantly as
we add vectors to the training set. In case the matrix V' can be clustered with high-enough
accuracy by distance-based algorithms like k-means, it has been showed that the Frobenius
norm of the matrix is proportional to vk, that is, the rank of the matrix depends on the
number of different classes contained in the data. Given that EM is just a more powerful
extension of k-means, we can rely on similar observations too. Usually, the number of
features d is much more than the number of components in the mixture, i.e. d > k, so
we expect d? to dominate the £3® term in the cost needed to estimate the mixing weights,
thus making Tx the leading term in the runtime. We expect this cost to be be mitigated
by using /., form of tomography but we defer further experiment for future research.

As we said, the quantum running time saves the factor that depends on the number
of samples and introduces a number of other parameters. Using our experimental results
we can see that when the number of samples is large enough one can expect the quantum
running time to be faster than the classical one. One may also save some more factors
from the quantum running time with a more careful analysis.

To estimate the runtime of the algorithm, we need to gauge the value of the parameters
0, and dg, such that they are small enough so that the likelihood is perturbed less than €,
but big enough to have a fast algorithm. We have reasons to believe that on well-clusterable
data, the value of these parameters will be large enough, such as not to impact dramatically
the runtime. A quantum version of k-means algorithm has already been simulated on
the MNIST dataset under similar assumptions [93]. The experiment concluded that, for
datasets that are expected to be clustered nicely by this kind of clustering algorithms, the
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value of the parameters §,, did not decrease by increasing the number of samples nor the
number of features. There, the value of §, (which in their case was called just J) has
been kept between 0.2 and 0.5, while retaining a classification accuracy comparable to the
classical k-means algorithm. We expect similar behaviour in the GMM case, namely that
for large datasets the impact on the runtime of the errors (d,,d¢) does not cancel out the
exponential gain in the dependence on the number of samples, and we discuss more about
this in the next paragraph. The value of €, is usually (for instance in scikit-learn [1106] )
chosen to be 1072, We will see that the value of 7 has always been 10 on average, with a
maximum of 105 in the experiments.

MAP ML

avg max avg max
I1X]l5 0.22 2.45 1.31 3.44
|logdet(X)| | 58.56 | 70.08 | 14.56 | 92.3

K*(X) 4.21 50 15.57 50
(%) 3.82 4.35 2.54 3.67
w(V) 2.14 2.79 2.14 2.79
k(V) 23.82 | 40.38 | 23.82 | 40.38

Table 6.1: We estimate some of the parameters of the VoxForge [148] dataset. Each model

is the result of the best of 3 different initializations of the EM algorithm. The first and
the second rows are the maximum singular values of all the covariance matrices, and the
absolute value of the log-determinant. The column x*(X) shows the condition number after
the smallest singular values have been discarded.

6.4 Experiments

We analyzed a dataset which can be fitted well with the EM algorithm [125, 10, ].
Specifically, we used EM to do speaker recognition: the task of recognizing a speaker from
a voice sample, having access to a training set of recorded voices of all the possible speakers.
The training set consist in 5 speech utterances for 38 speakers (i.e. clips of a few seconds of
voice speech). For each speaker, we extract the mel-frequency cepstral coefficients (MFCC)
of the utterances [125], resulting in circa 5000 vectors of 40 dimensions. This represent the
training set for each speaker. A speaker is then modeled with a mixture of 16 different
diagonal Gaussians. The test set consists of other 5 or more unseen utterances for each of
the same speakers. To label an utterance with a speaker, we compute the log-likelihood
of the utterance for each trained model. The label consist in the speaker with highest
log-likelihood. The experiment has been carried in form of classical simulation on a laptop
computer. We repeated the experiment using a perturbed model, where we added some
noise to the GMM at each iteration of the training, as in definition 52. Then we measured
the accuracy of the speaker recognition task. At last, we measured condition number, the
absolute value of the log-determinant, and the value of u(V) and p(X). In this way we
can test the stability and accuracy of the approximate GMM model introduced in Section
6.2, under the effect of noise. For values of dp = 0.038, §,, = 0.5, we correctly classified
98.7% utterances. The baseline for ML estimate of the GMM is of 97.1%. We attribute the
improved accuracy to the regularizing effect of the threshold and the noise, as the standard
ML estimate is likely to overfit the data. We report the results of the measurement in Table
6.1.

We used a subset of the voices that can be found on VoxForge [148]. The training set
consist in at 5 speech utterances from 38 speakers. An utterance is a wav audio clips of
a few seconds of voice speech. In order to proceed with speech recognition from raw wav
audio files, we need to proceed with classical feature extraction procedures. In the speech
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recognition community is common to extract from audio the Mel Frequency Cepstrum
Coefficients (MFCCs) features [125], and we followed the same approach. We selected
d = 40 features for each speaker. This classical procedure, takes as input an audio file, and
return a matrix where each row represent a point in R%°, and each row represent a small
window of audio file of a few milliseconds. Due to the differences in the speakers’ audio
data, the different dataset Vi ... V3g are made of a variable number of points which ranges
from n = 2000 to 4000. Then, each speaker is modeled with a mixture of 16 Gaussians with
diagonal covariance matrix. The test set consists of other 5 (or more) unseen utterances of
the same 38 speakers. The task is to correctly label the unseen utterances with the name
of the correct speaker. This is done by testing each of the GMM fitted during the training
against the new test sample. The selected model is the one with the highest likelihood. In
the experiments, we compared the performances of classical and quantum algorithm, and
measured the relevant parameters that govern the runtime of the quantum algorithm. We
used scikit-learn [116] to run all the experiments.

We also simulated the impact of noise during the training of the the GMM fitted
with ML estimate, so to assure the convergence of the quantum algorithm. For almost all
GMM fitted using 16 diagonal covariance matrices, there is at least a 3; with bad condition
number (i.e up to 2500 circa). Asin [93, 89] we took a threshold on the matrix by discarding
singular values smaller than a certain value. Practically, we discarded any singular value
smaller than 0.07. In the experiment, thresholding the covariance matrices not only did
not made the accuracy worse, but had also a positive impact on the accuracy, perhaps
because it has a regularizing effect on the model. For each of the GMM ~! estimated with
ML estimate, we perturbed - at each iteration. Then, we measured the accuracy on the
test set. For each model, the perturbation consists of three things. First we add to each of
the components of # some noise from the truncated Gaussian distribution centered in 6; in
the interval (6; — 89/V'k,0; + 69/v/k) with unit variance. This can guarantee that overall,
the error in the vector of the mixing weights is smaller than dy. Then we perturb each of
the components of the centroids p; with Gaussian noise centered in (p;); on the interval
((pj)i — %), (k)i + %). Similarly, we perturbed also the diagonal matrices ¥; with a
vector of norm smaller than §,,/7, where n = 10. As we are using a diagonal GMM, this
reduces to perturbing each singular value with Gaussian noise from a truncated Gaussian
centered ¥ on the interval ()i — 0,\/M/Vd, (£)ii + 6,/7/Vd). Then, we made sure
that each of the singular values stays positive, as covariance matrices are SPD. Last, the
matrices are thresholded, i.e. the eigenvalues smaller than a certain threshold o, are set to
0. This is done in order to make sure that the effective condition number x(X) is no bigger
than a threshold x,. With a e, = 7 x 10~2 and 70 iterations per initialization, all runs
of the 7 different initialization of classical and quantum EM converged. Once the training
has terminated, we measured all the values of k(X2), k(V), u(V), u(2),log det(X) for both
ML and for MAP estimate. The results are in the Table 6.1. Notably, thresholding the
Y; help to mitigate the errors of noise as it regularized the model. In fact, using classical
EM with ML estimation, we reached an accuracy of 97.1%. With parameters of §, = 0.5,
dp = 0.038, and a threshold on the condition number of the covariance matrices of X; of
0.07, we reached an accuracy of 98.7%.

We further analyzed experimentally the evolution of the condition number x(V;) while
adding vectors from all the utterances of the speakers to the training set V;. As we can see
from Figure 6.1, all the condition numbers are pretty stable and do not increase by adding
new vectors to the various training sets Vi,...V,.
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Figure 6.1: Evolution of x(V;) where V; is the data matrix obtained by all the utterances
available from the i-th speaker to the training set. For all the different speaker, the condi-
tion number of the matrix V; is stable, and does not increase while adding vectors to the
training set.
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6.5 Conclusions

Given the tremendous importance of the classical Expectation-Maximization algorithm,
we believe it is very important to consider quantum versions of EM. Here we proposed a
quantum Expectation-Maximization algorithm, and showed how to use it to fit a GMM.
We analyzed theoretically the asymptotic runtime of QEM, and estimated it on real-world
datasets, in order to better understand cases where quantum computers can offer a com-
putational advantage. This work enlarges the possible applications of quantum computing
in the area of unsupervised learning. We leave for future work the task of testing the al-
gorithm with further experiments (i.e. bigger and different types of datasets), and further
optimizations, like procedures for hyperparameter tuning.
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Chapter 7

Algorithms for log-determinant
and its applications

In this chapter we better analyze previous quantum and classical algorithms for computing
the log-determinant of SPD matrices, propose new and faster quantum algorithms that
cover a broader class of matrices, and explore the application thereof. In this section, we
give quantum algorithms for estimating the following quantity.

Definition 63 (Log-determinant of A). Let A € R™*" be a real symmetric positive definite
(SPD) matriz. Let o1,...,0, be the singular values of A. Then the log-determinant of A
is defined by:

log det(A) := Z logo;. (7.1)
j=1

Observe that, while the determinant of a SPD matrix is always positive (because the
eigenvalues are all positive), the log-determinant can be either positive or negative. Under
the assumption that the singular values of the matrix lies in the interval (0, 1], the log-
determinant is always a negative quantity. In case ||A’|| > 1, we define a matrix A = A’ /«
where a > 01(A’). Then, we can recover the log-determinant of A" as [32, lemma 5]:

log det(A”") = nlog(a) + log det(A) (7.2)

7.1 Classical algorithms for the log-determinant

The problem of approximating the log-determinant has been widely studied in classical
linear algebra and machine learning. Here we report some results which have been used
in the first formulation of the quantum Expectation-Maximization for Gaussian mixture
models. The idea of exploiting the dualism between Taylor series approximation and matrix
powers of approximation has been exploited in [33], where the authors were able to prove
the following theorem.

Theorem 64 (Determinant estimation - Boutsidis [33]). Let M € R™ ™ be a positive
definite matrixz with eigenvalues in (opmin,1). Then, for all § € (0,1) and € > 0 there
is a classical algorithms that outputs logdet(M)) such that |logdet(M)) — logdet(M)| <

2¢|log det(M)| with probability at least 1 — & in time: Tpet,e := O(MHMHO)

2 .
€ 0min

Subsequently, [78] managed to save a further factor of \/k(X) by using different al-
gorithmic techniques and polynomial approximation. The authors replaced the Taylor
approximation with Chebyshev approximation, leading to one of the fastest classical algo-
rithms for the log-determinant.

99
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Theorem 65 (Determinant estimation - Han [78]). Let M € R™ ™ be a positive definite
matriz with eigenvalues in (0min,1). Then, for all 6 € (0,1) and € > 0 there is a classical
algorithms that outputs log det(M)) such that |logdet(M)) —logdet(M)| < 2¢|log det(M))]
with probability at least 1 — § in time: Tpet,c := O(WMHMHO)

€“Omin

Given access to an algorithm that estimates the log-determinant of a normalized matrix
(i.e. when [|A]] < 1) with relative error, we can estimate the log-determinant of non-
normalized matrices with absolute error.

Lemma 66 (Log-determinant evaluation with absolute error). Let A be an algorithm
that runs in time T and returns an estimate of the log-determinant of a SPD matrix A
such that ||A|| < 1 with multiplicative error. Then, there is an algorithm that, given as
input a SPD matriz X, € > 0, and 0 < § < 1, outputs an estimate logdet(X)) such that
[log(det(X)) — log(det(X))| < e with probability 1 — 6 in time:

O (T log det(X)])

Proof. In order to apply Algorithm A, we need to be sure that all the eigenvalues lie in
(0min, 1). In order to satisfy this condition, we can scale the matrix by a constant factor
¢, such that ¥’ = ¥/c. In this way, logdet(¥') = log Hf(cfl-/c). Therefore, log(det(¥X')) =
log(det(X)) — log(c?). This will allow us to recover the value of log det(X) by Algorithm A.
We run the Algorithm with precision € = 1/4 to get an estimate v such that |log det(X') —
log det(3)| < 2¢|log det(X')|. Note that this means also that § < m < 3. Then, to
have an estimate with absolute error €, we apply again Algorithm A with precision ¢ = ;.
This concludes the proof by noting that we have an estimate for log(det(X)) with error
2¢'log(det(X)) < € in time:
O (T)logdet(X))]) .

Note that the estimate of ||X| can be estimated with a quantum algorithm with scal-

ing O( |\HZE\|HF26)) which is bounded by the runtime of the algorithm for the log-determinant
estimation. [91, Algorithm 4.3] O

We can use theorem 65 with lemma 66 together, and obtain the following classical
algorithm for the log-determinant:

Corollary 67 (Classical log-determinant estimation). There is an algorithm that, given
as input a SPD matriz 3, € > 0, and 0 < § < 1, outputs an estimate logdet(X)) such that
|log det(X)) — logdet(X))| < e with probability 1 — § in time:

O (e 2V/k() log(1/8)nnz()|log det(A))

In the following, we show how to use a quantum computer to obtain faster algorithms
for estimating the log-determinant. For this, we reduce the problem of estimating the log-
determinant to estimating the trace of a particularly singular value transformed matrix.
Thus, we split the task of estimating the trace of a matrix and the task of computing the
logarithm of the singular values of the matrix via singular value transformation.

7.2 Trace estimation

The algorithm for trace estimation is based on the observation that Tr[A] = L 37" | el Ae;.

2
Classical algorithms approximate this value by using certain probe vectors which can be
either Rademacher vectors (i.e. each entry is +1 or —1 with equal probability) or Gaussian
distributed. Along with the classical Rademacher and Gaussian estimator, there is another
kind of sample vector that has been studied in classical literature, and is more relevant for

quantum computers.
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In this section we briefly recall the definition of stochastic trace estimator, and recall
classical results on unit vector estimation techniques. We will see that even using the unit
vector estimator, it is not possible do improve upon the additive error approximation of
ne.

Definition 68 ((¢,d)-approximator of trace). Let A be a symmetric positive semi-definite
matriz. A randomized trace estimator T is an (¢, )-approzimator of Tr[A] if

Pr[|T — Tr[A]| < €Tr[A]] > 1 - 4. (7.3)
Definition 69 (Unit vector estimator [15]). A wunit vector estimator for a SPD matric
A e R™™ gs
n M
_ T A,
Uy = i ;zl Az; (7.4)

where the z;’s are M independent uniform random samples from the standard basis {e1,...e,}
of R™.

It is evident that this estimator does not depend on the off-diagonal elements of A,
so the quality of the estimator is affected by the distribution of the elements A;;. If the
diagonal elements are uniform, then only one sample will suffice, but if the distribution is
skewed, we need many more samples. It is easy to address this difficulty by mixing the
matrix so to make the diagonal element more uniform. Instead of computing the trace of
A, we compute the trace of FAFT, for a unitary matrix F defined as follows.

Definition 70 (Random mixing matrix). A random mizing matriz is o unitary matric
F =FD € R"™ where F is an n X n fixed unitary matriz called seed and D is an n X n
matriz where the diagonal is a Rademacher vector, i.e. D;; is 1 with equal probability.

In this way, we obtained that F flattens the distribution of all the diagonal of A. We
are ready to define a new estimator.

Definition 71 (Mixed unit vector estimator). A mized unit-vector estimator for a SPD

matriz A € R 4s
M

n
Ty =57 ; I FAFT 2 (7.5)
where the z;’s are M independent uniform random samples from {e1,...e,}

The quality of F is evaluated on the parameter n = || F'||2,,,: the smaller 7 the better the
mixing capacity [15]. It is possible to see that this value is reached in case the matrix F is
a Discrete Fourier Transform, where this value is 1/n. There are other possible choices for
the seed matrix, but we focus on this one, as performing a QFT in a fault tolerant quantum
computer is relatively simple. For reference on the various possible choices of seed matrices,

we recommend [15]. In [15, theorem 8.4, remark 8.5] they prove the following result:

Theorem 72 (Mixed Unit Vector estimator with DFT matrix [15] ). The mized unit vector
estimator Ty with the DFT matriz as the seed matriz F is an (e, §)-approximator of Tr[A]
for M > 2¢2log?(4n?/8) In(4/6).

7.2.1 Quantum trace estimation

The advantage of using the mixed stochastic trace estimator with a quantum computer is
the following. Using other stochastic trace estimators (like the Rademacher vectors or the
Gaussian vectors), we would incur a penalty in the runtime given by the norm of the probe
vectors. Using the mixed unit trace estimator, we can remove this dependence. In the
following, albeit we use the block-encoding formalism, we drop the variable of the number
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of qubits. That is, for a («, a, €) block-encoding we will just write (a,€). In the following,
we put forward a simple algorithm for trace estimation, based on Definition 69, and then
compare its performances with the quantum algorithm based on Definition 71.

Lemma 73 (Quantum trace estimation). Assume to have a (u(A),a,0) block encoding
access to a SPD matric A € R™ ™. For an € > 0, there is a quantum algorithm that
estimates Tr[A] with high probability, such that:

o |Tr[A] — Tr[A]| < €T'r[A] in time: O( ’[2]71) < O(@)

o |Tr[A] — Tr[A]| < en in time: O(”(A )

Proof. The algorithm is as follows. We apply the block-encoding of A to ﬁ >oioli), and

we obtain |¢) = \/H > (M(A) lla;|l lai, 0) + /1 —~2|G,1)), where a; is the i-th column of
A. Then again, we use quantum subroutine to estimate the inner product between |¢)) and
|p) = f >t o 1i,0). It is simple to check that:

<¢|¢>:Z IIaZH Iaz _ Z T = TriA/pA)]

np(A4 n

The error in matrix multiplication can be taken as small as possible as it will affect the
runtime only polylogarithmically. In order to estimate (1)|¢), we use amplitude estimation
with relative error €; on the Hadamard test. This procedure creates a state 1/p(0) |G,0) +
/1 —=p(0)|B,1), where the probability of measuring |0) on the leftmost qubit is p(0) =
%, and we use the hypothesis that the matrix is SPD, and thus (1|¢) > 0. Amplitude
estimation returns a relative error on p(0), and an estimate of (1|¢) with additive error €;
which we set equal to e/u(A), i.e. [(¥|¢p) — (¥|@) | < €1, and we to obtain |W —
w(A)(W|d)| < € in time 5(“(7‘4)) (note that the factor /p(0) that should appear at the
denominator of the runtime of amplitude estimation in the case of a Hadamard test of a
SPD matrix is bounded by 1/2). Multiplying this estimate by n, we obtain the absolute
error bound. If we want to obtain a relative error €, we can use amplitude estimation
with precision € = 7 TQA], which raises the runtime to O( [Z]”) < O(@), as
< k, under the assumption that | A2 < 1.

n
Tr[A] < o namm

O

Alas, this algorithm has a dependence on n, the dimension of the space. We could hope
to amend this by changing the vector we use in the quadratic form. Along with the matrix
A, we now assume to have quantum access to a Rademacher matrix. A Rademacher matrix
is a diagonal matrix whose entries are +1, each with probability 1/2. For a Rademacher
matrix D of size n x n, O(n) operations suffice to create quantum access to D. In the
following algorithm we also assume to have quantum access to a Rademacher diagonal
matrix D. For us, this Rademacher matrix will fulfil the role of the matrix D in the
Definition 71 of mixed unit vector estimator.

Lemma 74 (Quantum Mixed unit vector trace estimation). Assume to have quantum
access to a SPD matriz A € R"*™ such that |A|| < 1, and a diagonal Rademacher matriz
D € R"*™. There is a quantum algorithm that estimates Tr[A] such that |Tr[A]—Tr[A]| < e

in time: O = (n%)

Proof. We start by combining quantum access to the matrix D and A. Using just one
ancilla qubit, we can store the signs on the diagonal of D on the amplitudes, and create
the state

n

T 2o el ) 10).
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We use this state as input register to get quantum access to matrix A. Afterward, we use
quantum access to D using the second register of W STH(=1) ||ag| i) |a;). Further on,
F

i

we use the second register as index for D again. This unitary gives quantum access to the

matrix Ap = DADT:
1 n n
—D% (=) ay,; ) |4) .
i=0 j=0
Now, according to theorem 72, we pick M = 2¢; *log®(4n?/8)1In(4/6), Let M be a set
of M numbers sampled uniformly without repetitions from [n]. We create two states,
1) = o) = = Z%M |7) upon which we apply the QFT circuit, leading to |¢1) =

M
1h2) = \/ﬁ Z%M ZZ T |k). We use quantum access we just created to matrix Ap to

apply matrix multiplication to |1;), and compute the inner product between the resulting
state and |¢2). We obtain a scalar T such that:

M . . M
T = (1| Aps) = 24 <Z|FD(A§V|[|A||F)DTFTZ> = LS eTED(A/ A1) D" Fe
=0
=Tr[A/ | Allpl/M (7.6)

We get an estimate of (¢1|Ap/ || Al 12) with precision €;:

M
= 1
T 57 L e PO/ AL DT Fei < e
The error in matrix multiplication can be taken as small as needed as it will affect the
runtime only polylogarithmically. Thanks to theorem 72 and Definition 71, we obtain an
estimator for the trace Tr[A] = nMT whose error we bound with triangle inequality as:
|Tr[A] — Tr[A]] < [nMT —nMT| + |nMT — Tr[A]| < ¢ (7.7)
=nMe + exTr[A] <e (7.8)

By picking €, < €/(2nM ||Al|z) and €2 = €/2, the runtime for this algorithm is:
O (an))
O

7.3 Quantum algorithms for the log-determinant

7.3.1 Previous work

Some years ago, another quantum algorithm for the log-determinant had been put forward
[161]. This algorithm leverages quantum computers to sample from the uniform superpo-
sitions of singular values of a matrix. Then, once a certain number of samples is collected,
the log-determinant is estimated as:

1 n
Ellog o;] =~ n— 1 ;) =~ 1 A
nE[log 0;] n— Z og(o;) =~ logdet(A)

i=0

As the runtime of the algorithm was not thoroughly analyzed in [160], an analysis
appeared in [161].
Lemma 75 (Sampling-based algorithm for log-determinant [161]). Let A € R"™™ be a

SPD matriz for which we have quantum access. Then, there is a quantum algorithm, that
estimates log det(A) such that |logdet(A) — logdet(A)| < ne with high probability in time

O(n(A)R(A)/%). (7.9)
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Proof. The idea of this algorithm is to estimate the log-determinant as logdet(A4) =
nE[logo;], where Ellogo;] = 13" logo;. For this, we want to sample from the uni-
form distribution of singular values of A. Let’s recall that for a symmetric matrix A, its
eigenvalue decomposition is A = 37, 0ju;)(u;|. We start the algorithm from the maxi-
mally mixed state py = %Zj |7) (4], which also equals %Z; luj)(uj|, as a totally mixed
state is totally mixed in any orthogonal basis. By using SVE (or equivalently Hamiltonian
simulation and QPE), we can obtain p; = %ZJ luj)(uj| ® |6)(G;|, where |o; — &,] < e1
for all j. As consequence, it is simple to check using the Taylor expansion of the logarithm
function, that for each singular value, |logo; —logd;| < €1/0;. By lemma 20, the com-
plexity to generate p; is 5(u(A) /€1). By measuring the second register of p; we sample
from the uniform distribution of the singular values, and we can therefore approximate
E[log&,]. The error of the quantum procedure in estimating Eflog &,] is

1 _ 1 3 finn 1l a
— 1 P— < - ;- < = — < = = . .
2 (log; —logor)| < 3 floga; —logay| < T30 < TE = w(A)er. (710)
j=1 j=1 j=1
To approximate E[logG;] to precision €3, Hoeffding inequality (i.e. lemma 2) tells us
that it suffices to make O(1/€3) measurements on p;. By picking €1 = ¢/2k(A), €2 = €/2,
the error to estimate log det(A) is bounded by ne. The complexity is O(r(A)u(A)/€3).
O

Remark: If we do not use the SVE and assume that A is s sparse and hermitian (as in
the original formulation of this algorithm), then we can recover the singular values of A
applying phase estimation to a unitary that performs Hamiltonian simulation on A. The
complexity to implement e™*4? to precision € is O(st||Al|lmax + log1/€’) [104, ], and
we perform a quantum phase estimation with error O(1/0ax€1). Thus the complexity to
obtain py is O(s||Allmax/€1). In this setting we recover the result of [161], as the runtime

becomes O(s||Allmaxk(A)/€3).

Lemma 76 (Variance of Zhao’s estimator). Let A € R"™™ ™ such that ||A| < 1. Let
logdet(A) be the estimate of logdet(A) using the algorithm described in lemma 75 with
error parameter €. Then:

(nelog k(A))?

Var(logdet(A)) = D

Proof. The Bienaymé formula says that for random variables X;, Var(}_, X;) = >, Var(X;)
under the assumption that the random variables are independent. From this, as we have
chosen m = O(e~2) samples, we derive that:

n?Var(log o;)

R 1 — n? &
Var(logdet(A)) = Var(n% zi:lOg o) = Tz zi:var(k)g ;) = m

As we sample the o; uniformly, we can equivalently assume that we sample logo;
uniformly, and the variance of the uniform distribution on an interval [a,b] is: (b — a)?.
1

Therefore, for the random variable under consideration the variance is 15 (log(cy,)?). O

7.3.2 SVE-based quantum algorithm for the log-determinant

We start our series of quantum algorithms for the log determinant using a pretty direct
approach to the problem, i.e. using a quantum algorithm for singular value estimation.
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Algorithm 8 SVE-based quantum algorithm for the log-determinant

Require: Quantum access to the SPD matrix A € R™*" such that ||A| <1, € € (0, 1),.
Ensure: An estimate [logdet(A) — logdet(A)| < ne.
1: Prepare

1 n
A= —— S auli, ). 7.11
|A) Al > aijli ) (7.11)

ij=1
2: Perform SVE by theorem 20 up to precision €/ log x and do control rotations to prepare

L ol )a) (cv“g,g&j'm n |¢>> , (12)
j=1 J

1Al =

where C'=min; 5;/1/|10g 5| & omin//|10g Omin| = 1/k(A)+/log k(A).

3: Apply amplitude estimation to estimate the probability of |0) to precision
¢/k%(A)log k(A). Set the result as P.

4: Return logdet(A) = —k2(A)(log k(A))||A||% P.

Theorem 77 (SVE-based log-determinant). Let A € R™*™ by a SPD matriz such that
|A|l <1 for which we have quantum access as in Definition 8. Then, Algorithm 8 estimates
log det(A) such that |logdet(A) —logdet(A)| < logdet(A)e in time

O(u(A)r*(A)(log k(A))? /€%). (7.13)

Proof. We can rewrite the quantum state encoding the representation of A (which we can
create with quantum access to A) as follows:

n

1 I <
A= — ai;ili,j) = ——— oilui)|ug). 7.14
)= gy 32 altd) = g 2 eahdi) (714)

J=1

Starting from the state |A), we can apply SVE by theorem 20 to A up to precision €1, and
prepare the state

1 < N
—_ ojluid|u)a;).
HAHF; J| ]>| ]>| J>
Since we assume that || A|| < 1, using controlled operations, we can prepare

m Zajluj>luj> |5) (C@ 10) + |0L>> : (7.15)

where C' = min; 6;/+/|10g G| & Omin/\/|10g Omin| = 1/k(A)/logk(A). The probability

of |0) is

c? Ko N
P= _HAH?: Z&—?logoj. (7.16)
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(a). Error analysis. We choose € such that x(A)e; is small. Note that

- 032 ~ - n 0]2 n ]2
ZﬁlogajfZlogcrj < ’Z] &—JQI 80— D - lélogaj‘
i=1"J i=1
o? n
+‘Zj 15—;210g0]—2j:110g0j‘
2
< 221#2“0%0] log | +
J
(26(A)er + w2 (A)ed) 35—, |log o]
<

i (L 222+ 0(3) +
(2k(A)er + K2 (A)e?)|log det(A)]
n(k(A)er + O(k2(A)e?)) + (2k(A)er + K2(A)e?)| log det(A)|
(n + 2|logdet(A)])(k(A)er + O(k2(A)e?)).

Denote P’ as the e approximation of P obtained by amplitude estimation, then
|A|%P"/C? is an (n + 2|logdet(A)|)(k(A)er + O(k*(A)e?)) + €2 Al|%/C? approximation
of —logdet(A). Note that

n + 2|log det(A

( I (E(A)er + O(k*(A)e])) + e2|| A/ C
(n + 2|log det(A)
(

( i

(5(A)er + O(r*(A )6?))+62||A||2 K?(A) log k(A)
)
)

)
)

IA

n + 2nlog k(A))(k(A)er + O(k*(A)e})) + near? log K

)
= O(ner(A)log k(A) + neyr?(A) log k(A)). (7.17)

If we set nejr(A)logr(A) + neak?(A)logk(A) = ne, then €; = ¢/k(A)logk and €3 =
e/Kk%(A)log k(A).

(b). Runtime analysis. The runtime of the algorithm comes from the using of SVE by
theorem 20 and the performing of amplitude estimation on the state in equation (7.15).
The complexity to obtain the state (7.15) is O(u(A)/e1). The complexity to perform
amplitude estimation (i.e. theorem 18) is O(u(A)/e1er) = O(u(A)r3(A)(log k(A))2/€2).
We now use the hypothesis that ||A]] < 1 (say 1/2), and observe that |logdet(A)| >
|nlog(o1)| = nlog(1/0o1). Thus, we improve the precision in the estimate of the error,
and we run Algorithm 77 with precision m. By running our algorithm with a better
precision we can assure the error is now nm < elogdet(A). Hence the new complexity

becomes O(u(A)k(A)e2log(1/a1)) but we now can guarantee a relative error with respect
to logdet(A). As the matrix is sub-normalized, i.e. |A| < 1, this would increase the
runtime only by a constant factor. O

7.3.3 SVT based algorithm for log-determinant

For computing an estimate of the log-determinant with a better dependence on the param-
eters that governs the runtime we explore the framework of singular value transformation,
which is described in section 2.5.4. When we have a quantum access to A, i.e. when
using quantum data structures in theorem 8, we can obtain an (u(A),logn,log(e))-block-
encoding of A, as described in lemma 50 of [70]. More precisely, the error log(e) comes from
the truncation error performed on the entries of a;;, while creating the quantum accessible
data structure (i.e Definition 8). In the algorithms presented in this thesis we implicitly
considered this error to be 0. In the next algorithm we made it explicit, in order to have
a more general statement.

Theorem 78. Let ¢ > 0. Assume to have a (u(A),a,e1) block encoding of a SPD matriz
A € R™™ with ||A]| < 1 with e; < n(A)zlogE/i(A),u(A))M(A)' There is a quantum algorithm
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Algorithm 9 Log-determinant estimation using singular value transformation

Require: Block encoding (u(A),¢) for € as in theorem 78, for a SPD matrix A € R™*”
with [[Al| <1,e€(0,1).
Ensure: An estimate [logdet(A) — logdet(A)| < logdet(A)e.
1: Set e = and €3 = ¢/8log(2x(A4)),
2: Construct the polynomial S(z) in lemma 3 with accuracy es.
3: Prepare

1 n
[%0) = %;IWO)

4: Construct the block-encoding of S(A/u(A)) to precision 4k (A)\/€1/u(A) to create the
state:

1) = Z (A/u(A))[k)]0) +~]0)*.

5: Apply inner product estimation subroutines, i.e. lemma 30 with precision €3/ log(o)
to estimate (1g|11). Denote the result as P.
6: Return logdet(A) = 2nPlog(2x(A)) + nlog u(A).

that returns the estimate logdet(A) such that |logdet(A) — logdet(A)| < elogdet(A) in

time O(u(A)k(A)/e).

Proof. We define as S the polynomial approximation of the logarithm function (which we
reported in lemma 3) with error e3 . Combined with lemma 25 - which allows to create a
block encoding of a matrix where we applied a polynomial function to its singular values -
we can find an (1, a+2, 4x(A) /€1 /u(A) log(1/€)) block-encoding of S(A/u(A)) with circuit
complexity of O(r(A)u(A)polylog(1/es)) = O(x(A)u(A)). Remark that the polynomial
approximation induces an error in the estimate of the log-determinant. We can bound this
error, by analyzing the approximation of the singular values of the matrix S(A/u(A)) as:

~ ", log(o; /(A ~ logdet(A) —nlo A
ﬂ[S(A/u(A»]—ZQIOEEM(%(H(X))‘ ~ |8ty - PG —osn)
. toa(o/(4))
< L |Slos/uta )~ S|
< nes. (7.18)

From the states defined in Algorithm 9, it is simple to note that:

TrS(A/p(A))

1 n
= (Yo|t1) = Ekz::l k|S(A/u(A))|k) = .

Let P be an e;-approximation of P obtained by an inner product estimation subroutine,
(i.e. lemma 30). We set logdet(A) = 2nPlog(2k(A)u(A)) + nlog u(A) as an estimate of
log det(A). We use polynomial approximation of logarithm in lemma 3 with error e3.

The error is given by three things: the error in the block encoding of the polynomial
approximation, i.e. theorem 25, which is 4k(A)+/€1/u(A), and affects the creation of |t1).
The error €, in inner product estimation subroutines, that gives |P — P| < €, and the
error induced by the polynomial approximation on the trace, i.e. Equation (7.18). These
errors sums up additively, and thus we can use the triangle inequality to bound them, i.e.
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choose €3, €5 such that the whole error is bounded by ne.

ogde(4) oA = amlon(n(AiA) | AR 7]
< amhs(ar(n) |G
+ 2nlog(2k(A)u(A)) ’W)OWI) — TIS(A/'“)‘
+2n log(?/@( (A)) ’P P‘
< 2nlog(2k(A (63 +4k(A) e /i + 62).
< ne

If we choose €2 = €3 = €/8log(2k(A)u(A)), then the error is bounded by ne. The cost
to create a block-encoding of S(A/u(A)) is O(u(A)r(A) log(1/e3)). The total cost of the
algorithm to get an error of en is O(M) = (A4 A) (A,

We now use the hypothesis that ||A] < 1 (say 1/2), and observe that |log det(A4)| >
|nlog(o1)| = nlog(l/o1). Thus, we improve the precision in the estimate of the error,
and we run Algorithm 9 with precision m. By running our algorithm with a better
precision we can assure the error is now nm < elogdet(A). Hence the new complexity

becomes O(u(A)r(A)e 1 log(1/01)) but we now can guarantee a relative error with respect
to logdet(A). As the matrix is sub-normalized, i.e. ||A|| < 1, this would increase the
runtime only by a constant factor.

O

7.4 Tyler M-estimator

In this section we will discuss quantum algorithms for the problem of estimating high-
dimensional covariance matrices. This problem is often classically solved by the so called
Tyler M-estimator (TME), which we introduce in this section. The TME is a way to
estimate covariance matrices in contexts where the sample covariance matrix, (i.e. the
product of the (scaled) dataset X7 X) does not lead to a good estimator. This is the
case, for instance, when the data comes from sub-Gaussians and long-tailed distribution,
in high-dimensional spaces, or when the data has some outliers. TME outperforms the
sample covariance in many different scenarios. Among the many, we cite [62] for finance,
[119] for anomaly detection in wireless sensor networks, antenna array processing [114]
and radar detection using normalized matched filter [115]. The vast majority of work on
covariance matrix estimation addresses the Gaussian scenario, i.e when the points are as-
sumed to come from a Gaussian distribution. When the number of points is bigger than
the number of features (n > d), the sample covariance matrix is a maximum likelihood es-
timator of the covariance matrix, and it exists with high probability. The problem becomes
more challenging when the underlying distribution is non-Gaussian. A first generalization
of Gaussian distribution is the elliptical distribution, which has been widely studied in
classical statistics, which we discuss later.

TME is the solution of an optimization problem, which is derived from a log-likelihood
function (which is defined here as Definition 79. As we will see in this section, quantum
algorithms for the log-determinant give a fast algorithm for evaluating the log-likelihood
of the TME.

We focus on the task of estimating large covariance matrices in d dimensional spaces,
using n samples, for big n and d. In classical statistic, this task has recently gained
momentum, as in new datasets the number of samples might be comparable to the number
of features. In its original formulation it is defined only when d < n. For the case when
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n < d, there exist some regularized variants which are not studied here. The TME is a
d x d matrix ¥, which satisfies the following self-consistent equation:

fz Y,

a:E xl

More formally, the TME is deﬁned as follow:

Definition 79 (Tyler’s M-estimator [158, 105, 143]). For a given dataset X € R"*9  the
Tyler’s M-estimator of the covariance matriz of X is defined as:
Y = i F(X 7.19
arg  min F() (7.19)
S is SPD
where
1< 1
== Zlog(xiTZ_lx) + p log det(X) (7.20)
n-

Note that the requirement for Tr[X] = 1 is for requiring F(X) to be invariant to scaling,
such that F(X) = F(cX), but in some definitions [72], the requirement for Tr[X] = 1 can
be relaxed to be Tr[3] = p. The algorithm that estimate 3, is obtained by the limit of the
sequence Y, where each Yy is obtained by the a simple iterative procedure [158, , 87]:

Definition 80 (Iteration for Tyler’s M-estimator). Let X be the TME at iteration k.
Then, the TME at iteration k + 1 is defined as:

g1 = Z Tz /Tr Z Tz -~ (7.21)

The bottleneck of the classical algorithm is the calculation of the inverse of ¥ and the
estimation of Y"1 ;27 '2; and thus the cost of the whole algorithm is O(nd?).

The stopping criteria varies from case to case, and from application to application [158].
A common rule found in literature puts a threshold on the relative change of the Frobenius
norm of the TME obtained from two different iterations:

1%k — Zrallp )
12kl —

In the next section, we propose a quantum algorithm for computing the TME, and
analyze its runtime.

kxl

(7.22)

7.4.1 Quantum algorithm for Tyler’s M-estimators

We will see that the runtime of this subroutine depends on a parameter 7, which derives
from a concentration inequality of some quadratic forms. Subsequently, we analyze a spe-
cific context where this lemma is used, and argue that in practice the value of ~, should
be bounded.

Assumption on data: It will be convenient, for the sake of analysis of the runtime of
the algorithm, to further assume that each of the rows of X are normalized such that
1 < ||lzi]| < /7. Therefore, 1 <log(z] X~ a;) < log(k(X)n).

Corollary 81 (Quantum algorithm for likelihood estimation of Tyler’s M-estimator). Sup-
pose we have quantum access to a matriz X € R" %, and a symmetric positive definite
matriz ¥ such that ||2]| < 1 and || X|| < 1. For an € > 0 there is a quantum algorithm that

estimates F(3) such that |F(2) — F(2)| < € in time O(ZEe(E)logdet(3)

€
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Proof. Recall the formula for the likelihood of the TME is:
1< Tt 1
= Zlog(xi X))+ p log det(X)

We use theorem 78 and Corollary 66 to compute the log-determinant of ¥ with absolute
error €/2. For the leftmost addend in the definition of F(X), we create the state:

I &~y e
N Z i) | i)
i=0

(H(E)u(E)Hrin)

€

This requires O operations. Then, using controlled operations we create:

ID ) (Veoar=12)10)+ 1)

€

_ 1
For C = O(W) o

tain an estimate of p(0) = 1 3 "log(z7 ¥ ~'a;) such that |p(0) — p(0)] < p(0)e in time
O(log(nn)ﬁ(z)u(ﬁ)n)

Then, using amplitude estimation with precision we can ob-

. The result in the statement follows from performing amplitude esti-
mation with precision Wi(o)’ and noting that the time for computing the log-determinant
dominates the runtime for estimating the left addend of the log-likelihood with absolute
error.

O

In the next theorem, we assume to have quantum access to the matrix ¥ and we define
a quantum procedure to estimate X1 , using the iterative procedure in Definition 80.

Theorem 82 (Iteration of Tyler M-estimator). Assume to have quantum access to the
covariance matriz Xy, at iteration k, and a matric X € R For ¢ > 0 there is a
quantum algorithm that estimates Syy1 such that ||Sgi1 — Ek_HHF < €||Zk1]| in time

X)“(Zk)ﬂ(zk)V)

where v is a problem-dependent constant that depends on X and Xj.

Proof. First, observe that we want to compute the following quantity:

St = Spa1/Tr[Srea] Z Tz x/TTZ Tz " (7.23)

_Z—|xz ED) /Tr[Z—lx» (4]

By linearity of the trace, we know that the normalizing factor at the denominator is
of Tr[Spy1] = YU == = |[W]li. We start the algorithm by estimating the values of
the quadratic forms, and we create the state ﬁ > |i) [w;) where w; is an estimate of
(;|%; 'x;) with absolute error €; (note that 1 < (z;%; 'x;) < #(3x)). This step has a cost
of O(u(Xk)k(Ex)/€1). Next, we would like to store 1/w; in the amplitudes, that is, we
would like to create the state |[W) = WZ? 1/w; |i), where [|[W]|, = />, 1/w?. Note
that this state is ¢; far from |WW), for an error which we bound later in the proof. For this,
it suffices to perform a controlled operation:
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- Z i (210 +910).

Then, we undo the computation of the second register. The probability for measuring
2
0 in the ancilla qubit is p(0) = >, (Qfwi)” wi) . With amplitude amplification, the cost of

creating state |W) is thus Ty = O(“(Ekif(z")lw\{” ). We define § = % = \/ﬁ.

This parameter should be bounded by analyzing the context where Tyler ’s M-estimator
is applied, and we discuss a possible case in the next section. We bound the error in

‘|W> — |W>H We do this by first estimating the error on the non-normalized vectors,

ie. ||W WH and then by using Claim 16 to bound the distance between unit vectors.
— —| < ok . We bound ||W WH2

=1/> % § €14/ ﬁ = ¢||W||2. Using Claim 16 we derive a

distance between normalized vectors of v/2¢. Next, we use quantum access to the rows of
X using |W).

From the error |w; —w;| < €1, we derive that |- 1

W) i 3 g 9 ) (7.24)

We define a matrix X from the matrix X by normalizing each row x; such that they
have norm equal to 1. Quantum access to X is a weaker assumption that is satisfied from
the assumption of having quantum access to X. To conclude the algorithm we use matrix
multiplication with the matrix X , on the index register, thus performing the following

mapping:

T
ﬁZw%W” ||W||Z (I 0%*) M)((X)IiHvIOﬂ)Im

Along the lines of the proof of [38, lemma 24], we measure the probablhty of success of
measuring |0). For each of the basis |i), we have that ||ﬁXT li) || = (— as | XT |i) || = 1.
Rearranging the previous equation we obtain:

e (L
HW||2¥'0 >(wi il z>) +711,G)

Measuring the |0) register happens with probability p(0) = || W > w%ﬁ lz;) |z:) 13 =

HZ/;;\_H |2, which we approximate with precision €, and amplify with (X) rounds of am-
plitude amplification. The state that we obtain after these operations is:

Pht1) = —=—  — [i) &) (7.25)
IZk+1llm Z Wi

We perform ¢5 tomography (i.e. theorem 11) on this state with error e3. We now proceed
to estimate the value ||WW||;. Using a similar algorithm as the one described above, we can

create the state:
L > i) = 1) +4/1 L 0)
\/ﬁ 3 ! £/ W; w;

Using amplitude estimation, we obtain an estimation of ||W]|;. We conclude the algorithm
by returning an estimate of ¥j41 as:

[
i)

>
T TS
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The runtime of the algorithm is dominated by the runtime of performing tomography
and matrix multiplication on the state created in Eq. 7.24. The runtime of these operations

is of: )
o (& HXKER)A(Er)Y)
€3 €1
: . e (7|
Error analysis The error in our estimate X is given by the error estimating m

and the error in the tomography. With an absolute error estimate of [X541) of €3 and an

relative error on Hz/k:l HF and Tr[3g11] of ea, the final error estimate is of:

[=ea), —
St — =—=[Sp1)|| < (7.26)
Tr[Eg+1] »
il L), Il e
/\F - 7/\F + /\F || ‘Ek+1> - |2k+1>|| < (7.27)
TriSea]  TrSpn) ) TrlEen
] P
%(262) + 7/\17(61 +e3) < (7.28)
Tr[Ep4] Tr[Ep4]
€[Skl (7.29)

In the previous equation the error on the unit vector \§k+1> is given by the €3 error in the
tomography and the error €; in the creation of the state |IW) which we analyze now. We
set 2ea + €1 + €3 < €, and where €; is the error in the preparation on the state |IWW), which
we analyze now. In Equation 7.25 we want to create a state |Xjy1) which is €/2 close to
|Xk+1). We conclude by choosing €3 = €1 < €/4. From this we obtain the runtime in the
statement of the theorem. O

7.4.2 Further remarks on the quantum algorithm for TME

In this section we discuss in more detail the quantum algorithm of TME, namely the impact
of the noise in the final estimate of T.

Bounding v The value of v depends on the problem under consideration. Here we
report the analysis in [72] for the case of elliptical distributions when n,d — oo and
n/p — ¢ € [0,1]. Elliptical distributions are one of the possible generalizations of normal
distributions that encompass tails that are heavy.

Definition 83. A random wvector x € R? follows an elliptical distribution with location
vector  if it has the form

T=pu= uS;/zg" =pu+uz (7.31)

In the previous definition, p is the center of the elliptical distribution, u € R is a
constant (or a random variable that does not depend on (), and ¢ is a unit random vector
distributed uniformly on the unit sphere of R%. Under these assumptions, the following
lemma proves a concentration inequality on the value of ~.

Lemma 84 (lemma 7 of [72] - Weights of TME). Consider a sequence (n,d,Sq) where
n,d — oo with d/n — x € (0,1), and Sy is an SPD matriz. For every tripled (n,d,Syq), let
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T i N(0,S4) and let {1/w;}?_, be the corresponding weights of Eq. 7.23. Then, there
exist positive constants C,c, and ¢’ depending only on v, such that for any 0 < e < ¢, and
sufficiently large n,

1
Pr|max|n— — 1| > ¢| < Cne=cn
1 /LU,L'

The previous lemma says that the weights w; concentrate around 1/n, and as conse-
quence, the value of v in the case of elliptical distributions can be thought of as a constant
Q(1), but a thorough study is left for future work.

7.5 Conclusions

In this chapter we started by performing a better analysis of previous quantum algorithms
for estimating the log-determinant of a symmetric positive definite matrix. Then we pro-
ceeded with the study of new quantum algorithms for the same problem, but using the
state-of-the-art techniques in quantum linear algebra, leading to a qudaratic speedup with
respect to the previous quantum algorithm. Remark that the structure used in Algorithm
9 can be easily adapted to estimate other spectral sums, (i.e. the sum of the singular
values of a function after a function has been applied to them). Examples of other spectral
sums are the Estrada’s index, and the Schatten’s p norms, and this is currently a work in
progress. It is hard to expect faster algorithms for trace estimation. It has been shown in
[132] that the problem of estimating T'r[|A|P]/2" for a 2" x 2™ log-local Hamiltonian A up
to a given accuracy is hard for the class DQC1. As the DQCI is a class which contains a
broad class of problems in BQP, we expect the runtime of estimating the trace of a matrix
to be hard to improve.

The algorithm for TME is a simple application of a fast procedure to estimate the
log-determinant of a big matrix. Other problems in machine learning where one needs to
compute log-determinants of massive matrices are Gaussian processes (GP) and Gaussian
Markov random fields (GMRF) [78]. A discussion on possible extensions of the quantum
version of TME estimator is presented in the next chapter.
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Chapter 8

Conclusions

In this thesis, we developed some new quantum algorithms for machine learning. Most of
them (except the QFDC described in chapter 4) are the quantum analogue of a classical
machine learning algorithm. The remarkable difference between the classical and the quan-
tum algorithm is the runtime, which in the quantum case depends only polylogarithmically
in the dimension of the dataset, and in the classical case is usually polynomial (and linear
with some exceptions). Notably, there is a class of classical algorithms (that are usually
called de-quantizations) that under similar assumptions can reach a runtime with poly-
logarithmic dependence on the size of the data, albeit with a much worse dependence on
the other parameters, and thus we usually exclude them from the comparison between
the quantum and the best classical algorithms. In order to estimate the runtimes of the
quantum algorithms, we measure the parameters that govern it (like the condition number,
the function p described in definition 9), and test (through a classical simulation) whether
the errors introduced in the quantum procedures can still allow getting an accurate and
fast algorithm. Overall, the answer was quite positive, as we were often able to find the
hyper-parameters to get both fast and accurate algorithms.

We conclude this thesis with some research directions, which might fruitfully harness
quantum computers to get better algorithms, for problems where speed and precision are
important.

Other EM-like algorithms There is a rich theory of classical iterative algorithms that
alternate two (or more) operations until convergence. These algorithms perform a hill-
climbing approach [76] in order to find local minima or maximua of a function (usually
the log-likelihood). The success of these algorithms can be explained using a geometric
interpretation. Let P and @ be two elements from two sets P and Q. Let d: P x Q — R
be a function. The sequences {P;}72, and {Qx}72, are obtained from k € N by:

Pyy1 = arg I;lei% d(P, Q)

= in d( P,
Qr+1 arggel% ( k+1Q)

It has been shown [76, 44] that, if P and Q are convex sets, and the function d is the
Kullback-Leibler divergence, then all alternating minimization sequences converge mono-
tonically to a global minimum. Some of the most important alternating minimization
algorithms in ML (for which I believe quantum algorithms might be beneficial) are the
following.

e Latent Dirichlet Annotation is a Bayesian generative model for analyzing a collection
of discrete data (like documents). Each item in the collection of documents is modeled
as a mixture of a set of topics, and each topic is modeled as an infinite mixture over
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a set of topic probabilities. Classically, LDA is computed using a similar approach
to an EM algorithm [29)].

e Non-Gaussian Information bottleneck is the original formulation of the information
bottleneck [146], which we presented in chapter 3. When the probability distribution
of the variables in the feature space X and in the label space ) are not jointly
Gaussian - but the probability distribution of the marginal distributions are known -
it is possible to use an iterative algorithm, which was first formulated in the context of
the information bottleneck. [146]. Albeit the relevance of the information bottleneck
method in ML is sometimes questioned [64], a quantum algorithm for this problem
might still represent an interesting technical challenge, as a single iteration of this
algorithm consist in an update of 3 different probability distribution, and not just 2,
as in EM.

e Message-passing algorithms. In graphical models (like Bayesian’s networks and Markov
random fields) there is an important class of algorithms for performing inference,
called belief propagation. As the underlying optimization problem is often NP-hard
to solve exactly, belief propagation can be approximately solved via message passing
algorithms, which share many similarities with EM [17].

Quantum generative adversarial networks In recent years, some proposals for quan-
tizing neural networks and convolutional neural networks, with provable guarantees on the
runtime needed for fitting the model have been put forward [88, (]. In classical machine
learning, generative adversarial networks have revolutionized the landscape of generative
models. So far, only quantum variational circuits that mirror adversarial learning have
been put forward [16, ], leaving some space for a non-variational quantum algorithm
for adversarial learning.

Tyler M-estimator In statistics, TME has been extensively studied. One recent result
proved that taking an entry-wise threshold on the estimated TME, allows to better bound
the difference in spectral norm between the estimator and the shape matrix. As /o, to-
mography might be seen as a form of thresholding, it would be interesting to see if the
thresholding can be taken not only once the iterations of the TME have converged, but also
at each iteration. In this way, we can hope to reduce the dependence on the dimension of
the matrix, which is currently d2. Last but not least, TME is usually improved by another
form of regularization [143], which is usually the preferred estimator when the number of
samples is not sufficient to give a robust estimator. In these cases, we can use the following
estimator

1 d~ xx! Qg
Skt = £ R I
T Tt agn ; IS te 1+ ao

where aq is a scalar to be determined using some heuristics.
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