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>>> Machine Learning ... wut?

* Machine learning algorithms learn a desired input-output
relation from examples in order to interpret new inputs
[Schuld et al., 2015]

* Machine learning is like money laundering for bias [a dude on
Twitter, 2016]

1. Unsupervised {x1, ...xn, }
2. Supervised {(x1, y1)...(xn, yn)}
3. Reinforcement Learning: (get_action + get_reward)

Figure: [Wikipedia, 2016] Figure: [tok, ]

Figure:
[Ahmed et al., 2002]
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>>> Quantum mechanics: bugs or features?

* Qubit = 2 level system: |0⟩ = [1, 0], |1⟩ = [0, 1]

* Physical states are (unitary) vectors ∈ Hn ≃ C2n

* Evolution as (unitary) matrices
* CCNOT like NAND

Figure: [Wikipedia, 2016] Figure: [Wikipedia, 2016]
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>>> Bugs or features?

* Computation is reversible and linear. Measurements are
irreversible.

* Entanglement: spooky action at a distance
* No-cloning: you cannot copy (pure) quantum information.
* Superposition: |ψ⟩ = α |0⟩+ β |1⟩
* Interference: particles behave like waves and interfere
as such

* Grover's algorithm finds the input x to a function f(x)
that produces a particular output value y, using just
O(N1/2) evaluations of the function, where N is the size
of the function's domain. [Wikipedia, 2016]

* HHL algorithm for matrix inverse
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>>> Why it is important to ML?

* Speedup (which trade-offs?) [Wittek, 2014]
* Storage capacity is of interest. [Wittek, 2014]
* New models for data [Wiebe, 2016]
* Efficient training with fewer approximations
[Wiebe, 2016]

* What is learning?
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>>> List of qML algorithm

Table: Main approaches to ML: [Wittek, 2014]

Algorithm Use Grover Speedup
K-Medians Y Quadratic
Hierarchical clustering Y Quadratic
K-means Opt. Exponential
PCA N Exponential
Neural Networks Y -
Support Vector Machines Y Quadratic
Support Vector Machines N Exponential
Nearest neighbors Yes Quadratic
Regression N -
Projective Sim. Y Quadratic
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* Exhibit 1: Quantum CS vs Classical CS

* Exhibit 2: Need for specialization in cybersecurity
* Exhibit 3 ...
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>>> Why it is important to us?

* AI2: Training a big data machine to defend
[Veeramachaneni and Arnaldo, ]

* This AI Will Craft Tweets That You’ll Never Know Are
Spam [Simonite, 2016]

* ``Machine-Learning Algorithm Combs the Darknet for Zero
Day Exploits, and Finds Them'' - Darknet and Deepnet
Mining for Proactive Cybersecurity Threat Intelligence
[Nunes et al., 2016]

* APPLIED MACHINE LEARNING FOR DATA EXFIL AND OTHER FUN
TOPICS [Matt Wolff, 2016]

* Cyber Grand Challange
(https://www.cybergrandchallenge.com/)
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Dan Geer @ RSA 2015 : The future of Cybersecurity
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>>> PoC || GTFO

* https://bitbucket.org/mroystein/projectivesimulation
* Quipper: quantum language [Green et al., 2013] (HELP!)
* http://scikit-learn.org/
* Markov exfiltration:
https://github.com/bwall/markovobfuscate
[Matt Wolff, 2016]

Figure: [Bjerland, 2015]
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>>> The fuck
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>>> Q&A: quantum computers vs. reality

* I'm not a physicist <3

* 1 Billion euro investment in 2018 (Europe's Quantum
Manifesto)

* 11 different ways of implementing qubits.
* We demonstrate two-qubit and single-qubit logic gates
with respective fidelities 99.9(1)% and 99.9934(3)%,
significantly above the ≡ 99% minimum threshold level
required for fault-tolerant quantum computation, [...] in
a room-temperature trap. (4 Aug.)

* In addition, quantum computers restricted to domain
problems are becoming feasible. [Wittek, 2014]

* 15 (2001) ... 143 (2012) ... 56153 (2014) ...
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>>> End

E questo è quanto [Plank]'
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>>> Projective Simulation: [Briegel and De las Cuevas, 2012]

Figure: Aplysia (Wikipedia)
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>>> Episodic and Compositional Memory

* percepts: possible inputs of the algorithm.
s = (s1, s2, ..., sN ) ∈ S, where S is the percept space
S1 × ...× Sn. Each si = 1, ..., |Si|.

* clips: the fundamental unit of the episodic memory.
Percept clips are stimulated by percepts, action clips a,
if stimulated, trigger an action .

* edges : directed arc between clips. and they contain data
useful to the execution of the algorithm.

* emotions: piece of data (called emotions tag) attached to
the edge. e = (e1, e2, ..., ek) in the emotional space
E ≡ E1 × ...Ek = E, ek = 1, ...|Ek|.
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>>> Episodic Compositional Memory

Figure: [Briegel and De las Cuevas, 2012]
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>>> Episodic and Compositional Memory

while(1)
initial_clipt=get_initial_clip(percept)
(path,action)=get_path_action(initial_clip) #random walk
for i=0 to R

if (emotions_ok(path))
reward=get_reward(action) # exec action
updates_ecm_memory(reward)
break

(path,action)=get_action(initial_clip) #random walk
# default
reward=get_reward(action) #exec last action
updates_ecm_memory(reward)
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>>> Invasion Game [Briegel and De las Cuevas, 2012]

Figure: [Briegel and De las Cuevas, 2012]
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>>> Reflection

Figure: EC Memory for Invasion game: [Briegel and De las Cuevas, 2012]
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>>> Reflection's efficiency

Figure: Reflection r0x: [Briegel and De las Cuevas, 2012]

E(t) =
∑
s

P t
ok(a|s)P t(s)
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>>> Quantum Speedups in PS

* Because of reversibility, you lose information on the
arc's direction.

* Grover's algorithm can be used in order to get a
quadratic speedup of the ``reflection'' process.
[Paparo et al., 2014]

* Exponential speedup if EC Memory is a specific kind of
graph []
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>>> Why I like it

1. the more you think, the better (often)
2. the more you exercise, the fastest (direct connection

percept clip-action clip)
3. Associative learning (creativity)
4. It is biologically inspired and quantum powered
5. Clips composition
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