Quantum algorithms for classification

Alessandro Luongo

Twitter: @scinawa

https://luongo.pro/qml

15-11-2018, Montpellier, IQFA'9 Colloquium

- What are we doing here?
- 2 Toolbox
- Quantum algorithm for classification..
 QSFA
 QFDC
 q-means
- 4 ..on real data

Unsupervised methods

$$X \in \mathbb{R}^{n \times d}$$

- Anomaly detection
- Clustering
- Blind signal separation
- Text mining

Supervised methods

$$X \in \mathbb{R}^{n \times d}, Y \in \mathbb{R}^{n \times m}$$

- Regression
- Pattern recognition
- Time series forecasting
- Speech recognition

Unsupervised methods

$$X \in \mathbb{R}^{n \times d}$$

- Anomaly detection
- Clustering
- Blind signal separation
- Text mining
- Classification

Supervised methods

$$X \in \mathbb{R}^{n \times d}, Y \in \mathbb{R}^{n \times m}$$

- Regression
- Pattern recognition
- Time series forecasting
- Speech recognition
- Classification

but $size = O(2^{time})...$

but $size = O(2^{time})... \Rightarrow problem!$.

We need Quantum Machine Learning! runtime = O(polylog(size))

but $size = O(2^{time})... \Rightarrow problem!$.

We need Quantum Machine Learning! runtime = O(polylog(size))

[HHL09] ...

- Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. arXiv:1807.04271, 2018. (undergraduate thesis, advised by Scott Aaronson)
- Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and supervised clustering. arXiv:1811.00414, 2018.
- Ewin Tang et al. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension arXiv: 1811.04909, 2018

QML team @ IRIF

- Iordanis Kerenidis
- Jonas Landman
- Anupam Prakash

1 - ORAM

Let $X \in \mathbb{R}^{n \times d}$. There is a quantum algorithm that

$$|i\rangle |0\rangle \rightarrow |i\rangle |x_i\rangle \quad |x_i\rangle = ||x_i||^{-1} |x_i\rangle$$

1 - ORAM

Let $X \in \mathbb{R}^{n \times d}$. There is a quantum algorithm that

$$|i\rangle |0\rangle \rightarrow |i\rangle |x_i\rangle \quad |x_i\rangle = ||x_i||^{-1} |x_i\rangle$$

$$\frac{1}{\sqrt{\sum_{i=0}^{n} \|x_i\|^2}} \sum_{i=0}^{n} \|x_i\| |i\rangle |x_i\rangle$$

1 - QRAM

Let $X \in \mathbb{R}^{n \times d}$. There is a quantum algorithm that

$$|i\rangle |0\rangle \rightarrow |i\rangle |x_i\rangle \quad |x_i\rangle = ||x_i||^{-1} |x_i\rangle$$

$$\frac{1}{\sqrt{\sum_{i=0}^{n} \|x_i\|^2}} \sum_{i=0}^{n} \|x_i\| |i\rangle |x_i\rangle$$

• Execution time: $O(\log nd)$

1 - QRAM

Let $X \in \mathbb{R}^{n \times d}$. There is a quantum algorithm that

$$|i\rangle |0\rangle \rightarrow |i\rangle |x_i\rangle \quad |x_i\rangle = ||x_i||^{-1} |x_i\rangle$$

$$\frac{1}{\sqrt{\sum_{i=0}^{n} \|x_i\|^2}} \sum_{i=0}^{n} \|x_i\| |i\rangle |x_i\rangle$$

- Execution time: $O(\log nd)$
- Preparation time: $O(nd \log nd)$

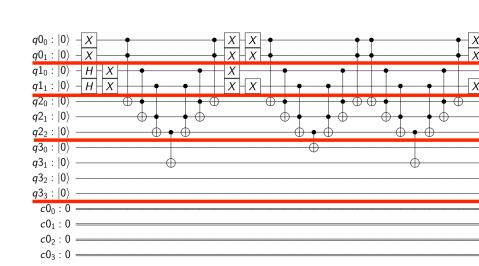
1 - QRAM

Let $X \in \mathbb{R}^{n \times d}$. There is a quantum algorithm that

$$|i\rangle |0\rangle \rightarrow |i\rangle |x_i\rangle \quad |x_i\rangle = ||x_i||^{-1} |x_i\rangle$$

$$\frac{1}{\sqrt{\sum_{i=0}^{n} \|x_i\|^2}} \sum_{i=0}^{n} \|x_i\| |i\rangle |x_i\rangle$$

- Execution time: $O(\log nd)$
- Preparation time: $O(nd \log nd)$
- Size: O(nd log nd)



QRAM [[2,3,4],[5,6,7],[8,9,10]]

2 - O-BLAS

- $M := \sum_{i} \sigma_{i} u_{i} v_{i}^{T} \in \mathbb{R}^{d \times d}$, $\|M\|_{2} = 1$, in QRAM
- x ∈ \mathbb{R}^d in QRAM.

There is a quantum algorithm that w.h.p. returns:

(1) $|z\rangle$ such that $||z\rangle - |M^{-1}x\rangle|| \le \epsilon$ in time $\widetilde{O}(\kappa(M)\mu(M)\log(1/\epsilon))$

2 - Q-BLAS

- $M := \sum_{i} \sigma_{i} u_{i} v_{i}^{T} \in \mathbb{R}^{d \times d}$, $\|M\|_{2} = 1$, in QRAM
- $x \in \mathbb{R}^d$ in QRAM.

There is a quantum algorithm that w.h.p. returns:

- (1) $|z\rangle$ such that $||z\rangle |M^{-1}x\rangle|| \le \epsilon$ in time $\widetilde{O}(\kappa(M)\mu(M)\log(1/\epsilon))$
- |z⟩ such that ||z⟩ |Mx⟩|| ≤ ε in time $\widetilde{O}(κ(M)μ(M)\log(1/ε))$

2 - Q-BLAS

- $M := \sum_{i} \sigma_{i} u_{i} v_{i}^{T} \in \mathbb{R}^{d \times d}$, $\|M\|_{2} = 1$, in QRAM
- x ∈ \mathbb{R}^d in QRAM.

There is a quantum algorithm that w.h.p. returns:

- (1) $|z\rangle$ such that $||z\rangle |M^{-1}x\rangle|| \le \epsilon$ in time $\widetilde{O}(\kappa(M)\mu(M)\log(1/\epsilon))$
- a state $|M^+_{\leq \theta, \delta} M_{\leq \theta, \delta} x\rangle$ in time $\tilde{O}(\frac{\mu(M) \|x\|}{\delta \theta \|M^+_{\leq \theta, \delta} M_{\leq \theta, \delta} x\|})$

2 - Q-BLAS

- $M := \sum_{i} \sigma_{i} u_{i} v_{i}^{T} \in \mathbb{R}^{d \times d}$, $\|M\|_{2} = 1$, in QRAM
- x ∈ \mathbb{R}^d in QRAM.

There is a quantum algorithm that w.h.p. returns:

- (1) $|z\rangle$ such that $||z\rangle |M^{-1}x\rangle|| \le \epsilon$ in time $\widetilde{O}(\kappa(M)\mu(M)\log(1/\epsilon))$
- (1) $|z\rangle$ such that $||z\rangle |Mx\rangle|| \le \epsilon$ in time $\widetilde{O}(\kappa(M)\mu(M)\log(1/\epsilon))$
- a state $|M_{\leq \theta, \delta}^+ M_{\leq \theta, \delta} x\rangle$ in time $\tilde{O}(\frac{\mu(M)||x||}{\delta \theta ||M_{\leq \theta, \delta}^+ M_{\leq \theta, \delta} x||})$

Get estimates of ||z|| = f(M)x (with mult. error ϵ_2 , time $O() \cdot \epsilon_2^{-1}$)

Gilyén, András, et al. "Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics." arXiv preprint arXiv:1806.01838 (2018).

2.5 - Q-BLAS

-
$$A := \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$$
, $B := \sum_{i} \lambda_{i} w_{i} l_{i}^{T} \in \mathbb{R}^{d \times d}$ in QRAM $\|A\|_{2} = \|B\|_{2} = 1$, in QRAM - $x \in \mathbb{R}^{d}$ in QRAM.

There is a quantum algorithm that w.h.p. returns:

$$\| |z\rangle$$
 such that $\| |z\rangle - |(AB)^{-1}x\rangle \| \le \epsilon$

$$\textcircled{m}$$
 a state $|(AB)^+_{<\theta,\delta}(AB)_{\leq\theta,\delta}x\rangle$

Get estimates of ||z|| = f(AB)x (with mult. error ϵ_2 , time $O() \cdot \epsilon_2^{-1}$)

Gilyén, András, et al. "Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics." arXiv preprint arXiv:1806.01838 (2018).

• Before: Quantum Singular Value Estimation

$$\sum_{i} \alpha_{i} | \mathbf{v}_{i} \rangle \mapsto \sum_{i} \alpha_{i} | \mathbf{v}_{i} \rangle | \overline{\sigma}_{i} \rangle$$

Now: Qubitization:

$$W = e^{i\phi_0\sigma_z}e^{i\theta\sigma_x}e^{i\phi_1\sigma_z}e^{i\theta\sigma_x}\cdots e^{i\phi_k\sigma_z}e^{i\theta\sigma_x}$$

3 - Compute distances

 $V \in \mathbb{R}^{n \times d}, C \in \mathbb{R}^{k \times d}$ in the QRAM, $\Delta > 0$ and $\epsilon > 0$ There is a quantum algorithm that w.h.p. and in time $\widetilde{O}\left(\frac{(T(V)+T(C))Z\log(1/\Delta)}{\epsilon}\right)$

$$\left|i\right\rangle \left|j\right\rangle \left|0\right\rangle \mapsto\ \left|i\right\rangle \left|j\right\rangle \left|\overline{d(v_{i},c_{j})}\right\rangle$$

where $|\overline{d(v_i, c_j)} - d(v_i, c_j)| \le \epsilon$, where $Z = \max_{i,j} (\|v_i\|^2 + \|c_j\|^2)$.

Based on: Wiebe, N., Kapoor, A., & Svore, K. (2014). Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv preprint arXiv:1401.2142.

3 - sketch proof

• Use QFD to build:

$$\frac{\|v_i\|}{\sqrt{Z_{ij}}}\ket{i}\ket{j}\ket{0}\ket{v_i} + \frac{\|c_j\|}{\sqrt{Z_{ij}}}\ket{i}\ket{j}\ket{1}\ket{c_j}$$

Hadamard on 3rd qubit. Note that

$$p(1)_{ij} = \frac{1}{2Z_{ii}} (\|v_i\|^2 + \|c_j\|^2 - 2\|v_i\| \|c_j\| \langle v_i \rangle c_j) = \frac{d(v_i, c_j)^2}{2Z_{ii}}$$

- Perform amplitude estimation on L copies.
- Use Median Lemma (Wiebe et. al.)
- Invert circuit to remove garbage (and multiply by $2Z_{ij}$).

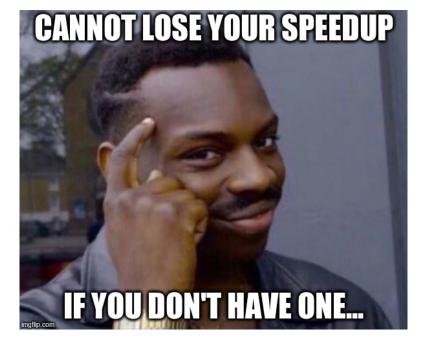
4 - Tomography

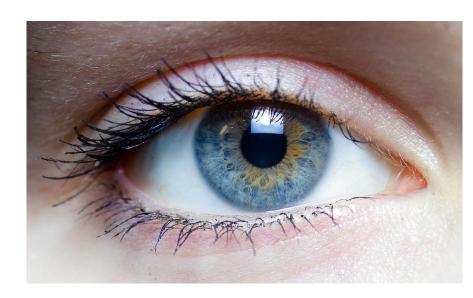
For a pure quantum state $|x\rangle$, there is a tomography algorithm with sample and time complexity $O(d\log d/\epsilon^2)$ that produces an estimate $\widetilde{x} \in \mathbb{R}^d$ with $\|\widetilde{x}\|_2 = 1$ such that $\|\widetilde{x} - x\|_2 \le \epsilon$ with probability at least $(1 - 1/d^{0.83})$.

Kerenidis, Iordanis, and Anupam Prakash. "A quantum interior point method for LPs and SDPs." arXiv preprint arXiv:1808.09266 (2018).

Other...

- Amplitude estimation
- Amplitude amplification
- Hamiltonian simulation
- Phase estimation
- Quantum Random Walks
- Swaps





Slow Feature Analysis (Supervised)

Input signal: $x(i) \in \mathbb{R}^d$. Task: Learn K functions:

$$y(i) = [g_1(x(i)), \cdots, g_K(x(i))]$$

Such that $\forall j \in [K]$. Minimize:

$$\Delta(y_j) = \frac{1}{a} \sum_{k=1}^{K} \sum_{\substack{s,t \in T_k \\ s < t}} (g_j(x(s)) - g_j(x(t)))^2$$

Constraints on output signal: average of components is 0, variance of components is 1, signals are decorrelated.

Def Cov. matrix $B := X^T X$, Derivative cov. matrix $A := \dot{X}^T \dot{X}$

Slow Feature Analysis (Supervised)

Input signal: $x(i) \in \mathbb{R}^d$. Task: Learn K functions:

$$y(i) = [g_1(x(i)), \cdots, g_K(x(i))]$$

Such that $\forall j \in [K]$. Minimize:

$$\Delta(y_j) = \frac{1}{a} \sum_{k=1}^{K} \sum_{\substack{s,t \in T_k \\ s < t}} (g_j(x(s)) - g_j(x(t)))^2$$

Constraints on output signal: average of components is 0, variance of components is 1, signals are decorrelated.

Def Cov. matrix $B := X^T X$, Derivative cov. matrix $A := \dot{X}^T \dot{X}$

$$AW = BW\Lambda$$

Data is whitened (sphered) if $B = X^T X = I$.

Data is whitened (sphered) if $B = X^T X = I$.

...Whitening its just matrix inversion (Moore-Penrose inverse)..

 $Z:=X^+X$..

Data is whitened (sphered) if $B = X^T X = I$.

...Whitening its just matrix inversion (Moore-Penrose inverse)..

 $Z := X^+ X$.. now $Z^T Z = I$

Data is whitened (sphered) if $B = X^T X = I$.

...Whitening its just matrix inversion (Moore-Penrose inverse).. $Z := X^+ X$..now $Z^T Z = I$ Freebie Theorem! There exists an efficient quantum algorithm for whitening that return $|Z\rangle := X^+ |X\rangle$

Step 2: projection

$$X \xrightarrow{Der.} \dot{X}$$

$$\downarrow^{Whit.} \quad \downarrow^{Whit.}$$

$$Z \xrightarrow{Der.} \dot{Z}$$

- Whiten data $|X\rangle \mapsto |Z\rangle$
- Project data in slow feature space $|Z\rangle \mapsto |Y\rangle$

New algo! QSFA

- Let $X = \sum_{i} \sigma_i u_i v_i^T \in \mathbb{R}^{n \times d}$, $\dot{X} \in \mathbb{R}^{n \log n \times d}$ QRAM.
- Let $\epsilon, \theta, \overline{\delta, \eta} > 0$.

There exists a quantum algorithm that produces:

• $|\overline{Y}\rangle$ with $|\overline{Y}\rangle - |A^+_{<\theta,\delta}A_{\leq\theta,\delta}Z\rangle| \leq \epsilon$ in time

$$\tilde{O}\left(\left(\kappa(X)\mu(X)\log(1/\varepsilon) + \frac{\left(\kappa(X) + \kappa(\dot{X})\right)(\mu(X) + \mu(\dot{X}))}{\delta\theta}\right) \dots \times \frac{||Z||}{||A_{\leq \theta, \delta}^{+} A_{\leq \theta, \delta} Z||}\right)$$

• $\overline{\|Y\|}$ with $|\overline{\|Y\|} - \|Y\|| \le \eta \|Y\|$ with an additional $1/\eta$ factor.

New algo! QFDC (Supervised)

 $X_k \in \mathbb{R}^{|T_k| \times d}$ matrix of elements labeled k $X_0 \in \mathbb{R}^{|T_k| \times d}$ repeats the row x_0 for $|T_k|$ times.

$$F_k(x_0) = \frac{\|X_k - X_0\|_F^2}{2(\|X_k\|_F^2 + \|X_0\|_F^2)},$$

$$\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle\sum_{i\in\mathcal{T}_k}\left\|x(0)\right\|\left|i\right\rangle\left|x(0)\right\rangle+\left|1\right\rangle\sum_{i\in\mathcal{T}_k}\left\|x(i)\right\|\left|i\right\rangle\left|x(i)\right\rangle\Big)$$

$$h(x_0) = \min_k \{F_k(y_0) = p(|1\rangle)\}$$

Combining QSFA and QFDC

Require:

X and \dot{X} in QRAM, test vector x(0), and $\varepsilon, \eta > 0$ error param.

Ensure:

A label for x(0)

1: for $k = 1 \rightarrow K'$ do

2: $s_k := 0$

3: Use QSFA to estimate $||Y_k||_F$ and the norm ||y(0)|| (to error η).

4: for $r = O(1/\eta^2)$ do

$$\frac{1}{\sqrt{N_k}}\Big(\left|0\right\rangle\sum_{i\in\mathcal{I}_k}\left\|y(0)\right\|\left|i\right\rangle\left|y(0)\right\rangle+\left|1\right\rangle\sum_{i\in\mathcal{I}_k}\left\|y(i)\right\|\left|i\right\rangle\left|y(i)\right\rangle\Big)$$

5: Apply a Hadamard to the first register

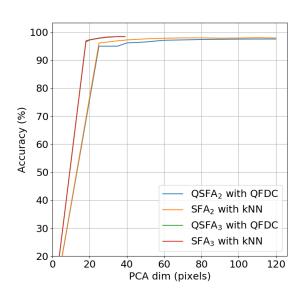
6: Measure first reg. If $|1\rangle$ then $s_k := s_k + 1$

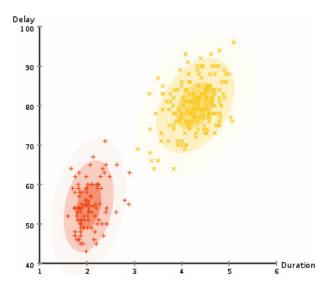
7: end for

8: Estimate $F_k(y(0)) := \frac{s_k}{\epsilon}$ (to error $O(\varepsilon + \eta)$).

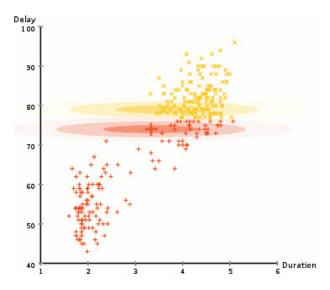
9: end for

Accuracy QSFA+QFDC

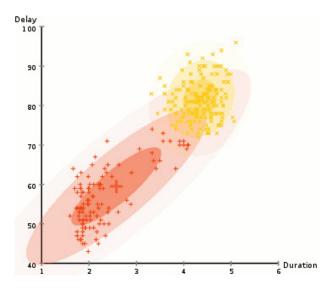




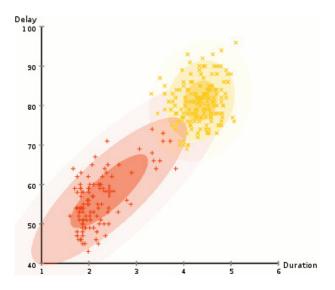
From Wikipedia



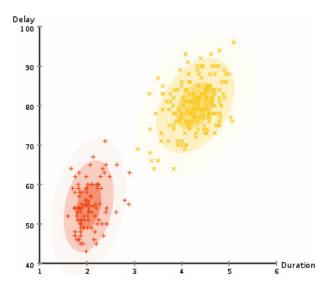
From Wikipedia



From Wikipedia



From Wikipedia



From Wikipedia

Well-clustered data

The data is $(\xi, \beta, \lambda, \eta)$ -well clustered if there are $\xi > 0$, $\beta > 0$, $0 \ll \lambda < 1$, $\eta > 1$:

- clusters' separation: $d(c_i, c_j) \ge \xi \quad \forall i, j \in [k]$
- **proximity to centroid:** A fraction λn of points v_i in the dataset verify: $d(v_i, c_{l(v_i)}) \leq \beta$.
- **3** dataset's width: All the norms are between 1 and $\eta = \max_i (\|v_i\|)$

k-means (Unsupervised)

Find initial centroids c_j Repeat until centroids are steady: $|c_i^t - c_i^{t+1}| \le \tau$

• Calculate distances between all points and all clusters

$$\forall i \in [n], c \in [k] \quad d(v_i, c_i)$$

Assign points to closer cluster

$$I(v_i) = \operatorname*{arg\,min}_{c \in [k]} d(v_i, c_i)$$

Calculate centroids again

$$c_j = \frac{1}{|C_j|} \sum_{i \in C_i} v_i$$

k-means (Unsupervised)

Find initial centroids c_j Repeat until centroids are steady: $|c_i^t - c_i^{t+1}| \le \tau$

Calculate distances between all points and all clusters

$$\forall i \in [n], c \in [k] \quad d(v_i, c_i)$$

Assign points to closer cluster

$$I(v_i) = \operatorname*{arg\,min}_{c \in [k]} d(v_i, c_i)$$

Calculate centroids again

$$c_j = \frac{1}{|C_j|} \sum_{i \in C_i} v_i$$

... is O(tndk) :(

δ -k-means (Unsupervised)

Find initial centroids c_j

Repeat until centroids are steady: $|c_i^t - c_i^{t+1}| \le \tau$

Calculate distances between all points and all clusters

$$\forall i \in [n], c \in [k] \quad d(v_i, c_i)$$

Assign points to closer cluster

$$L_{\delta}(v_i) = \{c_p \mid d^2(c_i^*, v_i) - d^2(c_p, v_i) \mid \leq \delta \}$$

$$I(v_i) = rand(L_{\delta}(v_i))$$

Calculate centroids again

$$c_j = \frac{1}{|C_j|} \sum_{i \in C_i} v_i$$

Q-Means (Unsupervised)

Find initial centroids c_i

Repeat until centroids are steady: $|c_i^t - c_i^{t+1}| \le \tau$

Calculate distances between all points and all clusters

$$\bigotimes_{i=0}^{K} \sum_{i=0}^{n} |i\rangle |j\rangle |d(v_i, c_i)\rangle$$

Assign points to closer cluster

$$\sum_{i=0}^{n} |i\rangle |I(i)\rangle$$

• Calculate centroids again

$$\frac{1}{\sqrt{Z}} \sum_{i \in IJ} \left\| c_j^{t+1} \right\| \left| c_j^{t+1} \right\rangle \left| j \right\rangle$$

Recovering centroids

$$(V^{T} \otimes I) \cdot U_{norms} \cdot \sum_{i=0}^{n} |i\rangle |I(i)\rangle$$

$$(V^{T} \otimes I) \left(\frac{1}{\sqrt{\|V\|_{F}}} \sum_{i=0}^{n} \|v_{i}\| |i\rangle |\ell(v_{i})^{t}\rangle\right)$$

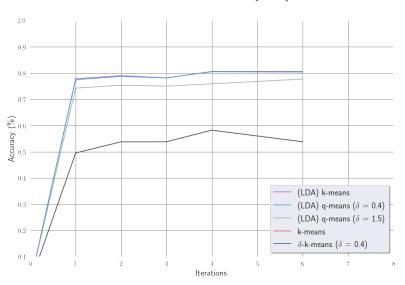
$$= \sum_{j \in [k]} \frac{1}{\sqrt{\sum_{C_{j}^{t+1}} \|v_{i}\|}} \sum_{i \in C_{j}^{t+1}} \|v_{i}\| |v_{i}\rangle |j\rangle$$

$$\frac{1}{Z} \sum_{i \in I} \|c_{j}^{t+1}\| |c_{j}^{t+1}\rangle |j\rangle$$

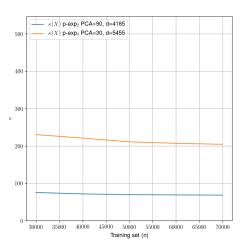
New algo! q-means

For a $(\xi, \beta, \lambda, \eta)$ -well clustered dataset $V \in \mathbb{R}^{n \times d}$ in QRAM, there is a quantum algorithm that returns in t steps the k centroids that cluster the dataset consistently with the classical δ -k-means algorithm in time $\widetilde{O}\left(t \cdot \frac{k^2 dZ^{5/2} \kappa(V)}{\delta^3}\right)$.

Accuracy q-means

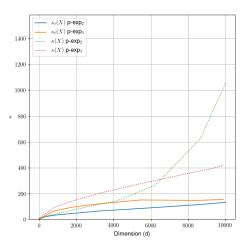


$\lambda_{max}/\lambda_{min}$: more data



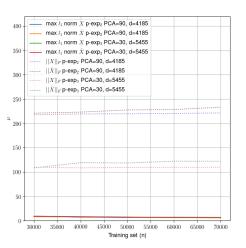
Condition number by increasing the number of elements in training set

$\lambda_{max}/\lambda_{min}$: more feature



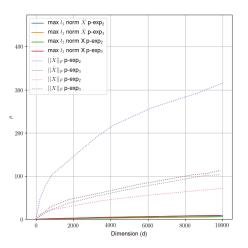
Condition number by increasing the features (pixels)

$\mu(X)$: more data



 $\mu(X)$ and $\mu(X)$ by increasing the number of elements in training set.

$\mu(X)$: more features



 $\mu(X)$ and $\mu(\dot{X})$ by increasing the number of features.

#TODOs

- Generalizations...
- Experiments...
- Code...
- New algos...
- Compositions...
- Adversarial QML...
- Privacy preserving QML...

Thanks for your time

there is never enough. (cit. Dan Geer)

- Quantum Machine Learning ⇒ https://luongo.pro/qml
- QSFA + QFDC ⇒ https://arxiv.org/abs/1805.08837
- q-means ⇒ stay tuned...