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1 What are we doing here?

2 Toolbox

3 Quantum algorithm for classification..
QSFA
QFDC
q-means

4 ..on real data





Unsupervised methods

X ∈ Rn×d

Supervised methods

X ∈ Rn×d, Y ∈ Rn×m

• Anomaly detection

• Clustering

• Blind signal separation

• Text mining

• Regression

• Pattern recognition

• Time series forecasting

• Speech recognition

• Classification • Classification
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ML’s algos:
runtime = O(poly(size)) = O(poly(n, d))...

but size = O(2time)...⇒ problem!.

We need Quantum Machine Learning!
runtime = O(polylog(size))

[HHL09] ...
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1 - QRAM
Let X ∈ Rn×d. There is a quantum algorithm that

|i⟩ |0⟩ → |i⟩ |xi⟩ |xi⟩ = ∥xi∥−1 |xi⟩

1√∑n
i=0 ∥xi∥

2

n∑
i=0

∥xi∥ |i⟩ |xi⟩

• Execution time: O(log nd)
• Preparation time: O(nd log nd)
• Size: O(nd log nd)
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QRAM [[2,3,4],[5,6,7],[8,9,10]]



2 - Q-BLAS
- M :=

∑
i σiuiv

T
i ∈ Rd×d, ∥M∥2 = 1, in QRAM

- x ∈ Rd in QRAM.
There is a quantum algorithm that w.h.p. returns :

(i) |z⟩ such that
∥∥|z⟩ − |M−1x⟩

∥∥ ≤ ϵ

in time Õ(κ(M)µ(M) log(1/ϵ))

(ii) |z⟩ such that ∥|z⟩ − |Mx⟩∥ ≤ ϵ

in time Õ(κ(M)µ(M) log(1/ϵ))

(iii) a state |M+
≤θ,δM≤θ,δx⟩

in time Õ( µ(M)∥x∥
δθ∥M+

≤θ,δM≤θ,δx∥)

Get estimates of ∥z∥ = f(M)x (with mult. error ϵ2, time
O() · ϵ−1

2 )

Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018).
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2.5 - Q-BLAS
- A :=

∑
i σiuiv

T
i , B :=

∑
i λiwil

T
i ∈ Rd×d in QRAM

∥A∥2 = ∥B∥2 = 1, in QRAM
- x ∈ Rd in QRAM.
There is a quantum algorithm that w.h.p. returns :

(i) |z⟩ such that
∥∥|z⟩ − |(AB)−1x⟩

∥∥ ≤ ϵ

(ii) |z⟩ such that ∥|z⟩ − |(AB)x⟩∥ ≤ ϵ

(iii) a state |(AB)+≤θ,δ(AB)≤θ,δx⟩

Get estimates of ∥z∥ = f(AB)x (with mult. error ϵ2, time
O() · ϵ−1

2 )

Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018).



• Before: Quantum Singular Value Estimation∑
i

αi |vi⟩ 7→
∑
i

αi |vi⟩ |σi⟩

• Now: Qubitization:

W = eiϕ0σzeiθσxeiϕ1σzeiθσx · · · eiϕkσzeiθσx



3 - Compute distances
V ∈ Rn×d, C ∈ Rk×d in the QRAM, ∆ > 0 and ϵ > 0
There is a quantum algorithm that w.h.p. and in time
Õ
(

(T(V)+T(C))Z log(1/∆)
ϵ

)
|i⟩ |j⟩ |0⟩ 7→ |i⟩ |j⟩ |d(vi, cj)⟩

where |d(vi, cj)− d(vi, cj)| ⩽ ϵ , where
Z = maxi,j(∥vi∥2 +

∥∥cj∥∥2
).

Based on: Wiebe, N., Kapoor, A., & Svore, K. (2014). Quantum algorithms
for nearest-neighbor methods for supervised and unsupervised learning.
arXiv preprint arXiv:1401.2142.



3 - sketch proof
• Use QFD to build:

∥vi∥√
Zij

|i⟩ |j⟩ |0⟩ |vi⟩+
∥∥cj∥∥√
Zij

|i⟩ |j⟩ |1⟩ |cj⟩

• Hadamard on 3rd qubit. Note that

p(1)ij =
1

2Zij
(∥vi∥2 +

∥∥cj∥∥2 − 2 ∥vi∥
∥∥cj∥∥ ⟨vi⟩ cj) = d(vi, cj)2

2Zij

• Perform amplitude estimation on L copies.

• Use Median Lemma (Wiebe et. al.)

• Invert circuit to remove garbage ( and multiply by 2Zij).



4 - Tomography

For a pure quantum state |x⟩, there is a
tomography algorithm with sample and time
complexity O(d log d/ϵ2) that produces an estimate
x̃ ∈ Rd with ∥x̃∥2 = 1 such that ∥x̃− x∥2 ≤ ϵ with
probability at least (1 − 1/d0.83).

Kerenidis, Iordanis, and Anupam Prakash. ”A quantum
interior point method for LPs and SDPs.” arXiv preprint
arXiv:1808.09266 (2018).



Other..

• Amplitude estimation
• Amplitude amplification
• Hamiltonian simulation
• Phase estimation
• Quantum Random Walks
• Swaps







Slow Feature Analysis (Supervised)

Input signal: x(i) ∈ Rd. Task: Learn K functions:

y(i) = [g1(x(i)), · · · , gK(x(i))]

Such that ∀j ∈ [K]. Minimize:

∆(yj) =
1
a

K∑
k=1

∑
s,t∈Tk
s<t

(
gj(x(s))− gj(x(t))

)2
Constraints on output signal: average of components is 0,
variance of components is 1, signals are decorrelated.

Def Cov. matrix B := XTX, Derivative cov. matrix A := ẊTẊ

AW = BWΛ
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Step 1: Whitening

Data is whitened (sphered) if B = XTX = I.

...Whitening its just matrix inversion
(Moore-Penrose inverse)..
Z := X+X ..now ZTZ = I
Freebie Theorem!
There exists an efficient quantum algorithm for
whitening that return |Z⟩ := X+ |X⟩
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Step 2: projection

• Whiten data |X⟩ 7→ |Z⟩
• Project data in slow feature space |Z⟩ 7→ |Y⟩



New algo! QSFA

- Let X =
∑

i σiuiv
T
i ∈ Rn×d, Ẋ ∈ Rn log n×d QRAM.

- Let ϵ, θ, δ, η > 0.
There exists a quantum algorithm that produces:

• |Y⟩ with | |Y⟩ − |A+≤θ,δA≤θ,δZ⟩ | ≤ ϵ in time

Õ
((

κ(X)µ(X) log(1/ε) +
(κ(X) + κ(Ẋ))(µ(X) + µ(Ẋ))

δθ

)
...× ||Z||

||A+≤θ,δA≤θ,δZ||

)

• ∥Y∥ with |∥Y∥ − ∥Y∥ | ≤ η ∥Y∥ with an additional 1/η
factor.



New algo! QFDC (Supervised)

Xk ∈ R|Tk|×d matrix of elements labeled k
X0 ∈ R|Tk|×d repeats the row x0 for |Tk| times.

Fk(x0) =
∥Xk − X0∥2

F

2(∥Xk∥2
F + ∥X0∥2

F)
,

1√
Nk

(
|0⟩
∑
i∈Tk

∥x(0)∥ |i⟩ |x(0)⟩+|1⟩
∑
i∈Tk

∥x(i)∥ |i⟩ |x(i)⟩
)

h(x0) = mink{Fk(y0) = p(|1⟩)}



Combining QSFA and QFDC
Require:

X and Ẋ in QRAM, test vector x(0), and ε, η > 0 error param.
Ensure:

A label for x(0)
1: for k = 1 → K do
2: sk := 0
3: Use QSFA to estimate ∥Yk∥F and the norm ∥y(0)∥ (to error η).
4: for r = O(1/η2) do

1√
Nk

(
|0⟩
∑
i∈Tk

∥y(0)∥ |i⟩ |y(0)⟩+ |1⟩
∑
i∈Tk

∥y(i)∥ |i⟩ |y(i)⟩
)

5: Apply a Hadamard to the first register
6: Measure first reg. If |1⟩ then sk := sk + 1
7: end for
8: Estimate Fk(y(0)) := sk

r (to error O(ε+ η)).
9: end for



Accuracy QSFA+QFDC
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Well-clustered data

The data is (ξ, β, λ, η)-well clustered if there are
ξ > 0, β > 0, 0 ≪ λ < 1, η > 1 :

1 clusters’ separation: d(ci, cj) ≥ ξ ∀i, j ∈ [k]
2 proximity to centroid: A fraction λn of points
vi in the dataset verify: d(vi, cl(vi)) ≤ β.

3 dataset’s width: All the norms are between 1
and η = maxi (∥vi∥)



k-means (Unsupervised)

Find initial centroids cj
Repeat until centroids are steady: |ctj − ct+1

j | ≤ τ

• Calculate distances between all points and all clusters

∀i ∈ [n], c ∈ [k] d(vi, ci)

• Assign points to closer cluster

l(vi) = arg min
c∈[k]

d(vi, ci)

• Calculate centroids again

cj =
1
|Cj|
∑
i∈Cj

vi

... is O(tndk) :(
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δ-k-means (Unsupervised)

Find initial centroids cj
Repeat until centroids are steady: |ctj − ct+1

j | ≤ τ

• Calculate distances between all points and all clusters

∀i ∈ [n], c ∈ [k] d(vi, ci)

• Assign points to closer cluster

Lδ(vi) = {cp |d2(c∗i , vi)− d2(cp, vi)| ≤ δ }

l(vi) = rand(Lδ(vi))

• Calculate centroids again

cj =
1
|Cj|
∑
i∈Cj

vi



q-means (Unsupervised)

Find initial centroids cj
Repeat until centroids are steady: |ctj − ct+1

j | ≤ τ

• Calculate distances between all points and all clusters
K⊗
j=0

n∑
i=0

|i⟩ |j⟩ |d(vi, ci)⟩

• Assign points to closer cluster
n∑
i=0

|i⟩ |l(i)⟩

• Calculate centroids again
1√
Z

∑
j∈[k]

∥∥∥ct+1
j

∥∥∥ |ct+1
j ⟩ |j⟩



Recovering centroids

(VT ⊗ I) · Unorms ·
n∑
i=0

|i⟩ |l(i)⟩

(
VT ⊗ I

)( 1√
∥V∥F

n∑
i=0

∥vi∥ |i⟩ |ℓ(vi)t⟩

)

=
∑
j∈[k]

1√∑
Ct+1
j
∥vi∥

∑
i∈Ct+1

j

∥vi∥ |vi⟩ |j⟩

1
Z

∑
j∈[k]

∥∥∥ct+1
j

∥∥∥ |ct+1
j ⟩ |j⟩



New algo! q-means

For a (ξ, β, λ, η)-well clustered dataset V ∈ Rn×d in
QRAM, there is a quantum algorithm that returns in
t steps the k centroids that cluster the dataset
consistently with the classical δ-k-means algorithm
in time Õ

(
t · k

2dZ5/2κ(V)
δ3

)
.



Accuracy q-means



λmax/λmin: more data

Condition number by increasing the number of elements in
training set



λmax/λmin: more feature

Condition number by increasing the features (pixels)



µ(X): more data

µ(X) and µ(Ẋ) by increasing the number of elements in
training set.



µ(X): more features

µ(X) and µ(Ẋ) by increasing the number of features.



#TODOs

• Generalizations...
• Experiments...
• Code...
• New algos...
• Compositions...
• Adversarial QML...
• Privacy preserving QML...



Thanks for your time
there is never enough.

(cit. Dan Geer)

@scinawa

• Quantum Machine Learning ⇒ https://luongo.pro/qml

• QSFA + QFDC ⇒ https://arxiv.org/abs/1805.08837

• q-means ⇒ stay tuned...
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