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What have we said so far?
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Cool work is always result of a great team

- Iordanis Kerenidis (work on QSFA)
- Bull/Atos’ team (computational power & useful discussions)
- Nicola Gigante (discussion on Büchi automata)
- Frédéric Magniez, Anupam Prakash, Jonas Landman (useful
discussions)
- Luis Trigo Vidarte & Mathieu Bozzio (the pictures @ LIP6).
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Introduction to quantum computation

Amplitude amplification and language security

Quantum machine learning on security datasets

Quantum algorithms for formal software verification

Further impacts con information security
Information-theoretically secure Key-Distribution
Blind quantum computation
Position based quantum cryptography
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Figure: What is this? (Courtesy of LIP6)[BOV+18]
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Figure: What is this?(Courtesy of LIP6)
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“Scinawa, WTF is a photon?”
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I know what a qubit is!

- A qubit is a unitary vector in C2.
- Example: |ψ〉 = [a, b] s.t. |a|2 + |b|2 = 1 and a, b ∈ C
- These 2 vectors form a base, and encode 0 and 1:
0⇒ |0〉 = [1, 0], 1⇒ |1〉 = [0, 1]

- |ψCAT〉 = 1√
2
|0〉+ 1√

2
|1〉

|ψCAT〉 = 1√
2
|DEAD〉+ 1√

2
|ALIVE〉
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Figure: Bloch’s sphere representation of a qubit
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Other axioms...

Composition of multiple qubits using tensor product:

|ψ1〉 ⊗ |ψ2〉 = [a, b]⊗ [c , d ] = [ac , ad , bc, bd ]

.
Takeaway: With n qubits we describe state

|ψ〉 =
2n−1∑
i=0

αi |i〉

with
∑2n−1

i=0 |αi |2 = 1.
- Quantum state ∝ probability distribution..
- Unitary vector means that 〈ψ|ψ〉 = 1
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Other axioms...
- Computation is performed by gates(= matrices) that act on qubits.
- (many) set of gates universal for classical computation
- (many) sets of gates universal for quantum computation :)
- A gate/matrix U is unitary iff UU∗ = U∗U = I . (unitary = quantum
)
- We can always apply the inverse of a gate

Figure: A quantum circuit
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Quantum gates: example

X =

[
0 1
1 0

]
X |0〉 = |1〉 X |1〉 = |0〉

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT |0〉 |0〉 = |0〉 |0〉

CNOT |1〉 |0〉 = |1〉 |1〉
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Quantum gates: more quantumish examples

H =
1√
2

[
1 1
1 −1

]
H |0〉 = |+〉 =

1√
2
|0〉+

1√
2
|1〉

H |1〉 = |−〉 =
1√
2
|0〉 − 1√

2
|1〉

Figure: Bloch’s sphere representation of a qubit
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Theorem
There is no unitary Ucopy such that U |ψ〉 |0〉 → |ψ〉 |ψ〉

Proof.
Suppose Ucopy exist. Then we could write:

Ucopy |ψ1〉 |α〉 = |ψ1〉 |ψ1〉 Ucopy |ψ2〉 |α〉 = |ψ2〉 |ψ2〉

We check if Ucopy preserve the norm:

〈α| 〈ψ1|U†copyUcopy |ψ2〉 |α〉 = 〈ψ1| 〈ψ1| |ψ2〉 |ψ2〉

Since U†copyU = I we can write

〈α|α〉 〈ψ1|ψ2〉 = | 〈ψ1|ψ2〉 |2 ⇒ 〈ψ1|ψ2〉 = | 〈ψ1|ψ2〉 |2

Therefore, if Ucopy exist is not unitary and therefore not a valid quantum
mechanic operation.. maybe magic!
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STDOUT for a quantum computer

- A POVM is a collection of positive operators Mi such that∑
i Mi = I2n .

- The probability of reading a certain outcome given a quantum state
|φ〉 is 〈φ|Mi |φ〉.
- Let |ψ〉 =

∑2n−1
i=0 αi |i〉.

If the state is measured in the standard basis, ( Mi = |ei 〉 〈ei |), the
probability of measuring i-th outcome is given by |αi |2.
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WTF are you talking about Scinawa?
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PoC || GTFO
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Quantum computers as GPUs
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Figure: Define our quantum program
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Figure: Set values of quantum registers and do the sum :)
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Figure: The “real” code for summing registers

23 / 67



Figure: How quantum code looks like.

Quantum Assembly:
X a[2]
X b[2]
CNOT a[0], b[0]
...
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(Quantum) Language Security
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When a program is secure? [Lam77]
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What is satefy?
What is liveness?
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Satefy = “bad things will not happen”
Liveness = “good thing will eventually happen” .
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Formal languages

See [SPBL13]
Sassaman, Len, et al. “Security applications of formal language theory.”
IEEE Systems Journal 7.3 (2013): 489-500.
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Parser properties

(i) soundness (safety) - a parser accept only string in the corresponding
language and rejects everything else,

(ii) termination (safety) - a parser eventually halts on every string
presented to it,

(iii) completeness (liveness) - a complete parser accepts every string in its
corresponding language.

These properties derive from the fact languages up to deterministic
context-free can be parsed by a deterministic automata.
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Threat Model
Suppose you are a service provider that has to process a certain number of
message per second: s1, ...sN . The messages for the server are expected to
be words of a formal language L that can be specified by a grammar G for
which a deterministic parser exist (i.e. deterministic context free
grammar). The server is expected to behave correctly on inputs in L. An
input is considered malicious if it is not in L. We assume to have quantum
access to those messages. We are tasked to find the malicious inputs in the
dataset, such that we can remove them, and send the good ones to the
service provider.

How much does it takes classically to test all the inputs?
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Theorem (Amplitude amplification)

[BHMT02] Let A be any quantum algorithm that uses no measurements,
and let f : {0, 1}n → {0, 1} be any Boolean function. There exists a
quantum algorithm that given the initial success probability a > 0 of A,
finds a good solution with certainty using a number of applications of A
and A−1 which is in Θ(1/

√
a) in the worst case.
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A
1√
N

N∑
i=0

|i〉 |0〉 → 1√
N

N∑
i=0

|i〉 |si 〉 =
1√
N

 ∑
i s.t. si∈L

|i〉 |si 〉+
∑

i s.t. si 6∈L
|i〉 |si 〉


|ψG 〉 :=

1√
N −m

∑
i∈L
|si 〉 and |ψM〉 :=

1√
m

∑
i 6∈L
|si 〉

We can rewrite it’s output state as follow:

|ψ〉 =

√
m

N
|ψM〉+

√
N −m

N
|ψG 〉 = |ψ〉 = sin(θ) |ψM〉+ cos(θ) |ψG 〉
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Building Uf from f

Uf |si 〉 |0〉 =

{
|si 〉 |1〉 , if si /∈ L

|si 〉 |0〉 , if si ∈ L

Is just the quantum circuit implementing the classical function!
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Amplitude amplification...in practice!

We defined
|ψ〉 = sin(θ) |ψM〉+ cos(θ) |ψG 〉

Let Q = AU0⊥A
−1Up.

Qk |ψ〉 = cos((2k + 1)θ) |ψm〉+ sin((2k + 1)θ) |ψg 〉 (1)
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Quantum LangSec Firewall (with sampling)

Require:
Access to oracle A storing N input string
A grammar G of a LangSec language L, error parameter ε.

Ensure:
Our data contains only safe input

1: Construct a quantum circuit Uf for parsing G
2: for k ∈ {0 · · · 4 log ε} do:
3: for j ∈ {0 · · · dlogc(1/sin(2sin−1(1/

√
N)))e} do:

4: Extract m ∈ [ dc je ]
5: Create |ϕ〉 = A

∑
i |i〉 |0〉 and perform Qm |ϕ〉

6: Measure the index register → i .
7: if si /∈ L then
8: Remove the sample from the database: A = A/{si}
9: end if

10: end for
11: end for
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Theorem (Quantum firewall)

Given quantum access to N different words of length up to l and the
specification of a deterministic context free grammar G there exist an
algorithm that removes strings that don’t belong to the language L(G )
with certainty, and the expected number of evaluations of Uf and A in
Θ
(√

mN
)
.

(classically is O(N))
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Surveillance anyone?
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Code

XML? Snort regexp?
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Resource estimation

Given a grammar G, for which N do we get an advantage? [ABL+17]
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Quantum Machine Learning
(for fun and profit)
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Figure: Scinawa in Erasmus @ Bochum, with <3
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Slow feature analysis

Training set X ∈ Rn×d

x(i) = [x1(i)), · · · , xd(i)] ∈ Rd , i ∈ [n]

.
Each x(i) belongs to one of K different classes.
The goal is to learn K − 1 functions gj(x(i)), j ∈ [K − 1] such that:

y(i) = [g1(x(i)), · · · , gK−1(x(i))]

is very similar for the training samples of the same class and largely
different for samples of different classes.
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Slow feature analysis

Let a =
∑K

k=1
(|Tk |

2

)
. ∀ j ∈ [K − 1], minimize:

∆(yj) =
1
a

K∑
k=1

∑
s,t∈Tk
s<t

(gj(x(s))− gj(x(t)))2

with the following constraints:
1
n

∑K
k=1

∑
i∈Tk

gj(x(i)) = 0 ∀j ∈ [K − 1]

1
n

∑K
k=1

∑
i∈Tk

gj(x(i))2 = 1 ∀j ∈ [K − 1]

1
n

∑K
k=1

∑
i∈Tk

gj(x(i))gv (x(i)) = 0 ∀v < j ∈ [K − 1]
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Slow feature analysis

Let a =
∑K

k=1
(|Tk |

2

)
. ∀ j ∈ [K − 1], minimize:

∆(yj) =
1
a

K∑
k=1

∑
s,t∈Tk
s<t

(gj(x(s))− gj(x(t)))2

with the following constraints:

- zero mean
- unitary variance
- signals are decorrelated
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Matrix algebra

Theorem ([CGJ18, GSLW18])

Let M :=
∑

i σiuiv
T
i ∈ Rd×d such that ‖M‖2 = 1, and a vector x ∈ Rd

stored in QRAM. There exist quantum algorithms that with probability at
least 1− 1/poly(d) return:

a state |z〉 such that | |z〉 − |Mx〉 | ≤ ε in time Õ(κ(M)µ(M) log(1/ε))

a state |z〉 such that | |z〉 − |M−1x〉 | ≤ ε in time
Õ(κ(M)µ(M) log(1/ε))

a state |M+
≤θ,δM≤θ,δx〉 in time Õ( µ(M)‖x‖

δθ
∥∥∥M+
≤θ,δM≤θ,δx

∥∥∥)

One can also get estimates of the norms with multiplicative error η by
increasing the running time by a factor 1/η.

46 / 67



Theorem (QSFA algorithm [KL18])

Let X =
∑

i σiuiv
T
i ∈ Rn×d and its derivative matrix Ẋ ∈ Rn log n×d stored

in QRAM format. Let ε, θ, δ, η > 0. There exists a quantum algorithm that
produces as output a state |Y 〉 with | |Y 〉 − |A+

≤θ,δA≤θ,δZ 〉 | ≤ ε in time

Õ

((
κ(X )µ(X ) log(1/ε) + (κ(X )+κ(Ẋ ))(µ(X )+µ(Ẋ ))

δθ

)
||Z ||

||A+
≤θ,δA≤θ,δZ ||

)
and an

estimator ‖Y ‖ with |‖Y ‖ − ‖Y ‖ | ≤ η ‖Y ‖ with an additional 1/η factor.
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Figure: Comparing QSFA and SFA on MNIST
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SPAM: notes in quantum machine learning
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Formal software verification

Model checking with Büchi
automata
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Intro

Theorem (S1S decidability)

Monadic second order logic is decidable.

Formal software verification is done using languages of S1S logic.
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Definition (Büchi automata)

A Büchi automata is a tuple A = (Q,A,∆, q0,F ), where Q is a finite set
of states, A is a finite alphabet of symbols, q0 ∈ Q is an initial state,
F ⊆ Q is a set of final states, and δ ⊆ Q × A× Q is the transition
function. A computation of A on a ω-word α is a ω-word σ on Q such that
σ(0) = q0 and, for each i ≥ 0, σ(i), α(i), σ(i + 1) ∈ ∆. A computation σ
has success if In(σ) ∩ F = ∅. An automata A accept a ω-word α if exists a
successfully computation of A on α. The language L(A) accepted by A is
the language of ω-words.
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A language is ω-regular if and only if is accepted by a Büchi automata.
ω-regular languages satisfy many properties of regular languages.

Theorem (Closure of ω-languages )

If L1, L2 ⊆ Aω are ω-regular, also L1 ∩ L2 and L1 ∪ L2 and L̄1 are ω-regular.

The emptiness problem for a language L given a grammar G is to decide
weather L(G ) = ∅.

Theorem (Decidibility of the emptiness problem)

The emptiness problem for Büchi automata is decidable

Proof.
From the definition of accepting condition for a Büchi automata, it follows
that a Büchi automata accept a word if and only if it’s transition graph has
a cycle with a finial state reachable from the initial state. Therefore it is
sufficient to find a cycle in the graph associated with the Büchi automata
from an initial state to any final state.
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Classically, MST are found using BFS or DFS in time O(m + n).

Theorem
The problem “FIND d SMALLEST VALUES OF DIFFERENT TYPE”
(among N elements) has bounded error quantum query complexity of
O(
√
Nd).[DHHM06]
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Long story short..[DHHM06]

m + n >
√

mn log n
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#NiceToHave

Code
Data on real world graphs
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Protocols

Quantum key distribution
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- Classical cryptography relies on computational assumption. i.e. we
believe there are portables that are difficult to solve by classical
computer (i.e. factoring)
- Post-quantum cryptography is CLASSICAL cryptography built on
top of problem that we believe to be hard to solve by QUANTUM
computer.
- Quantum cryptography is the art of using quantum communication
protocols in order to build encryption schemes that are
information-theoretically secure.
- We remove a weak link in the chain-of-trust (assuming secure
hardware and implementation)
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BB84 protocol

- Classical channel: public, vulnerable, authenticated
- Quantum channel: public, vulnerable. (air, fiber,...)
- Length of the key N, requires n = (4 + δ)N qubits
- Alice generates two binary strings n: ~a = a0, · · · , an, ~b = b0, · · · , bn
- If bi is 0 then Alice sends in the quantum channel |ai 〉, otherwise she
sends H |bi 〉.
- Bob generates a random string ~c of length n as well. If ci is 0 the
measure, otherwise he applies H and then measure.
- Then they use the classical authenticated channel to reveal ~b and ~c .
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Conclusion on QKD

- By adding information-theoretic security we remove (forever) a
possible weak node in the chain of trust of our infrastructure.
- Sure, we (temporarily) add the possibility of physical attacks on the
hardware infrastructure...
- But the overall consequence is that we increase the cost of an attack!
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Blindness and verification

Quantum computers give the possibility to delegate computation “in the
cloud”.
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Position based quantum cryptography

- The goal of position-based cryptography is for an honest party to
use her spatio-temporal position as her only credentials in a
cryptographic protocol.
- Position verification aims at verifying that a certain party (the
prover), holds a given position in space-time.
- Example: Pizza ordering problem.
- Classically, information-theoretic security could never be obtained: it
is always possible for a coalition of adversaries to convince the verifiers
that the adversary are in the right position.
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- Currently, a class of attacks requires exponential entanglement
shared between the attackers to succeed.
- Open Problem: Prove that such attack is optimal will give a secure
protocol for quantum position based cryptography.
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Why is cool?

- We unlock a possibility that previously was not allowed by classical
cryptography!
- (like cryptocurrencies ) We don’t know yet HOW MUCH this will be
useful.
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TESTING QUANTUM SOFTWARE. HELP!
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Thanks for your time,
there is never enough. (cit.)

https://luongo.pro
Twitter: @scinawa
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